The ability to predict transport properties of fluids, such as the self-diffusion coefficient and viscosity, has been an ongoing effort in the field of molecular modeling. While there are theoretical approaches to predict the transport properties of simple systems, they are typically applied in the dilute gas regime and are not directly applicable to more complex systems. Other attempts to predict transport properties are performed by fitting available experimental or molecular simulation data to empirical or semi-empirical correlations. Recently, there have been attempts to improve the accuracy of these fittings through the use of Machine-Learning (ML) methods. In this work, the application of ML algorithms to represent the transport properties of systems comprising spherical particles interacting via the Mie potential is investigated. To this end, the self-diffusion coefficient and shear viscosity of 54 potentials are obtained at different regions of the fluid-phase diagram. This data set is used together with three ML algorithms, namely, k-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and Symbolic Regression (SR), to find correlations between the parameters of each potential and the transport properties at different densities and temperatures. It is shown that ANN and KNN perform to a similar extent, followed by SR, which exhibits larger deviations. Finally, the application of the three ML models to predict the self-diffusion coefficient of small molecular systems, such as krypton, methane, and carbon dioxide, is demonstrated using molecular parameters derived from the so-called SAFT-VR Mie equation of state [T. Lafitte et al. J. Chem. Phys. 139, 154504 (2013)] and available experimental vapor–liquid coexistence data.

1.
E.
Hendriks
,
G. M.
Kontogeorgis
,
R.
Dohrn
,
J.-C.
de Hemptinne
,
I. G.
Economou
,
L. F.
Žilnik
, and
V.
Vesovic
,
Ind. Eng. Chem. Res.
49
,
11131
(
2010
).
2.
K. E.
Gubbins
,
Y.-C.
Liu
,
J. D.
Moore
, and
J. C.
Palmer
,
Phys. Chem. Chem. Phys.
13
,
58
(
2011
).
3.
B. E.
Poling
,
J. M.
Prausnitz
, and
J.
O’Connell
,
The Properties of Gases and Liquids
,
5th ed.
(
McGraw-Hill Professional
,
New York, NY
,
2001
).
4.
J. O.
Valderrama
,
Ind. Eng. Chem. Res.
42
,
1603
(
2003
).
5.
M.
Michelsen
and
J.
Mollerup
,
Thermodynamic Models: Fundamentals and Computational Aspects
(
Tie-Line Publications
,
2004
).
6.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
Ind. Eng. Chem. Res.
29
,
1709
(
1990
).
7.
A.
Gil-Villegas
,
A.
Galindo
,
P. J.
Whitehead
,
S. J.
Mills
,
G.
Jackson
, and
A. N.
Burgess
,
J. Chem. Phys.
106
,
4168
(
1997
).
8.
J. M.
Prausnitz
,
R. N.
Lichtenthaler
, and
E. G.
de Azevedo
,
Molecular Thermodynamics of Fluid-phase Equilibria
(
Pearson Education
,
Philadelphia, PA
,
1998
).
9.
T.
Lafitte
,
A.
Apostolakou
,
C.
Avendaño
,
A.
Galindo
,
C. S.
Adjiman
,
E. A.
Müller
, and
G.
Jackson
,
J. Chem. Phys.
139
,
154504
(
2013
).
10.
D. A.
McQuarrie
,
Statistical Mechanics
,
Harper’s Chemistry Series
(
Longman
,
London
,
1976
).
11.
S. E.
Quiñones-Cisneros
,
C. K.
Zéberg-Mikkelsen
, and
E. H.
Stenby
,
Fluid Phase Equilib.
169
,
249
(
2000
).
12.
D. R.
Reichman
and
P.
Charbonneau
,
J. Stat. Mech.
2005
,
P05013
.
13.
Theory and Simulation of Hard-Sphere Fluids and Related Systems
,
2008th ed.
,
Lecture Notes in Physics
, edited by
A.
Mulero
(
Springer
,
Berlin
,
2008
).
14.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
,
2nd ed.
(
Elsevier
,
2002
).
15.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
London
,
2017
).
16.
P. R.
Sassiat
,
P.
Mourier
,
M. H.
Caude
, and
R. H.
Rosset
,
Anal. Chem.
59
,
1164
(
1987
).
17.
D.
Chandler
,
J. Chem. Phys.
62
,
1358
(
1975
).
19.
R. J.
Speedy
,
F. X.
Prielmeier
,
T.
Vardag
,
E. W.
Lang
, and
H.-D.
Lüdemann
,
Mol. Phys.
66
,
577
(
1989
).
20.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
(
Cambridge University Press
,
1990
).
21.
F.
Demmel
,
D.
Szubrin
,
W.-C.
Pilgrim
, and
C.
Morkel
,
Phys. Rev. B
84
,
014307
(
2011
).
22.
H.
Liu
,
C. M.
Silva
, and
E. A.
Macedo
,
Ind. Eng. Chem. Res.
36
,
246
(
1997
).
23.
N. M.
Blagoveshchenskii
,
A. G.
Novikov
, and
V. V.
Savostin
,
Phys. Solid State
56
,
120
(
2014
).
24.
N.
Blagoveshchenskii
,
A.
Novikov
,
A.
Puchkov
,
V.
Savostin
, and
O.
Sobolev
,
EPJ Web Conf.
83
,
02018
(
2015
).
25.
G. V.
Kharlamov
and
S. V.
Zhilkin
,
J. Phys.: Conf. Ser.
899
,
052009
(
2017
).
26.
Y. A.
Aljeshi
,
M. B. M.
Taib
, and
J. P. M.
Trusler
,
Int. J. Thermophys.
42
,
140
(
2021
).
27.
C.
Corral-Casas
,
L.
Gibelli
,
M. K.
Borg
,
J.
Li
,
S. F. K.
Al-Afnan
, and
Y.
Zhang
,
Phys. Fluids
33
,
082009
(
2021
).
28.
R. L.
Rowley
and
M. M.
Painter
,
Int. J. Thermophys.
18
,
1109
(
1997
).
29.
R.
Laghaei
,
A. E.
Nasrabad
, and
B. C.
Eu
,
J. Phys. Chem. B
109
,
5873
(
2005
).
30.
31.
X.
Wang
,
S.
Ramírez-Hinestrosa
,
J.
Dobnikar
, and
D.
Frenkel
,
Phys. Chem. Chem. Phys.
22
,
10624
(
2020
).
32.
S. E.
Quiñones-Cisneros
,
C. K.
Zéberg-Mikkelsen
,
J.
Fernández
, and
J.
García
,
AIChE J.
52
,
1600
(
2006
).
33.
A. S.
de Wijn
,
V.
Vesovic
,
G.
Jackson
, and
J. P. M.
Trusler
,
J. Chem. Phys.
128
,
204901
(
2008
).
34.
F.
Llovell
,
R. M.
Marcos
, and
L. F.
Vega
,
J. Phys. Chem. B
117
,
8159
(
2013
).
35.
S.
Becker
,
E.
Devijver
,
R.
Molinier
, and
N.
Jakse
,
Phys. Rev. E
105
,
045304
(
2022
).
36.
W. F.
Reinhart
,
A. W.
Long
,
M. P.
Howard
,
A. L.
Ferguson
, and
A. Z.
Panagiotopoulos
,
Soft Matter
13
,
4733
(
2017
).
37.
S.
Dasetty
,
I.
Coropceanu
,
J.
Portner
,
J.
Li
,
J. J.
de Pablo
,
D.
Talapin
, and
A. L.
Ferguson
,
Mol. Syst. Des. Eng.
7
,
350
(
2022
).
38.
J.
O’Leary
,
R.
Mao
,
E. J.
Pretti
,
J. A.
Paulson
,
J.
Mittal
, and
A.
Mesbah
,
Soft Matter
17
,
989
(
2021
).
39.
J. L.
McDonagh
,
W. C.
Swope
,
R. L.
Anderson
,
M. A.
Johnston
, and
D. J.
Bray
,
Polym. Int.
70
,
248
(
2021
).
40.
E.
Boattini
,
M.
Dijkstra
, and
L.
Filion
,
J. Chem. Phys.
151
,
154901
(
2019
).
41.
M.
Spellings
and
S. C.
Glotzer
,
AIChE J.
64
,
2198
(
2018
).
42.
A.
Fabrizio
,
B.
Meyer
, and
C.
Corminboeuf
,
J. Chem. Phys.
152
,
154103
(
2020
).
43.
C.
Dietz
,
T.
Kretz
, and
M. H.
Thoma
,
Phys. Rev. E
96
,
011301
(
2017
).
44.
J. L.
McDonagh
,
N.
Nath
,
L.
De Ferrari
,
T.
van Mourik
, and
J. B. O.
Mitchell
,
J. Chem. Inf. Model.
54
,
844
(
2014
).
45.
J. L.
McDonagh
,
D. S.
Palmer
,
T. v.
Mourik
, and
J. B. O.
Mitchell
,
J. Chem. Inf. Model.
56
,
2162
(
2016
).
46.
J. L.
McDonagh
,
T.
van Mourik
, and
J. B. O.
Mitchell
,
Mol. Inf.
34
,
715
(
2015
).
47.
L.
Joss
and
E. A.
Müller
,
J. Chem. Educ.
96
,
697
(
2019
).
48.
K.
Zhu
and
E. A.
Müller
,
J. Phys. Chem. B
124
,
8628
(
2020
).
49.
A. S.
Alshehri
,
A. K.
Tula
,
F.
You
, and
R.
Gani
,
AIChE J.
68
,
e17469
(
2022
).
50.
K. K.
Yalamanchi
,
V. C. O.
van Oudenhoven
,
F.
Tutino
,
M.
Monge-Palacios
,
A.
Alshehri
,
X.
Gao
, and
S. M.
Sarathy
,
J. Phys. Chem. A
123
,
8305
(
2019
).
51.
G. B.
Goh
,
C.
Siegel
,
A.
Vishnu
,
N. O.
Hodas
, and
N.
Baker
, in
IEEE Winter Conference on Applications of Computer Vision (WACV)
(
IEEE
,
2018
), p.
1340
.
52.
V.
Mann
,
K.
Brito
,
R.
Gani
, and
V.
Venkatasubramanian
,
Fluid Phase Equilib.
561
,
113531
(
2022
).
53.
A.
Tihic
,
G. M.
Kontogeorgis
,
N.
von Solms
,
M. L.
Michelsen
, and
L.
Constantinou
,
Ind. Eng. Chem. Res.
47
,
5092
(
2007
).
54.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
,
J. Phys. Chem. Lett.
6
,
2326
(
2015
).
55.
J.
Schmidt
,
M. R. G.
Marques
,
S.
Botti
, and
M. A. L.
Marques
,
npj Comput. Mater.
5
,
83
(
2019
).
56.
A. A.
Moud
,
Colloids Interface Sci. Commun.
47
,
100595
(
2022
).
57.
M.
Ihme
,
W. T.
Chung
, and
A. A.
Mishra
,
Prog. Energy Combust. Sci
91
,
101010
(
2022
).
58.
Y.
Elbaz
,
D.
Furman
, and
M.
Caspary Toroker
,
Adv. Funct. Mater.
30
,
1900778
(
2020
).
59.
A.
Abbasi
and
R.
Eslamloueyan
,
Chemom. Intell. Lab. Syst.
132
,
39
(
2013
).
60.
X.
Zhao
,
T.
Luo
, and
H.
Jin
,
Ind. Eng. Chem. Res.
61
,
8542
(
2022
).
61.
N.
Melzi
,
L.
Khaouane
,
S.
Hanini
,
M.
Laidi
,
Y.
Ammi
, and
H.
Zentou
,
J. Appl. Mech. Tech. Phys.
61
,
207
(
2020
).
62.
J.
Zhou
,
S.
Chupradit
,
K.
Ershov
,
W.
Suksatan
,
H.
Abdulameer Marhoon
,
M.
Alashwal
,
S.
Ghazali
,
M.
Algarni
, and
A. S.
El-Shafay
,
J. Mol. Liq.
353
,
118808
(
2022
).
63.
J. P.
Allers
,
F. H.
Garzon
, and
T. M.
Alam
,
Phys. Chem. Chem. Phys.
23
,
4615
(
2021
).
64.
J. P. S.
Aniceto
,
B.
Zêzere
, and
C. M.
Silva
,
J. Mol. Liq.
326
,
115281
(
2021
).
65.
J. P.
Allers
,
J. A.
Harvey
,
F. H.
Garzon
, and
T. M.
Alam
,
J. Chem. Phys.
153
,
034102
(
2020
).
66.
K.
Papastamatiou
,
F.
Sofos
, and
T. E.
Karakasidis
,
AIP Adv.
12
,
025004
(
2022
).
67.
C. J.
Leverant
,
J. A.
Harvey
, and
T. M.
Alam
,
J. Phys. Chem. Lett.
11
,
10375
(
2020
).
68.
T. M.
Alam
,
J. P.
Allers
,
C. J.
Leverant
, and
J. A.
Harvey
,
J. Chem. Phys.
157
,
014503
(
2022
).
70.
X.
He
,
W.
Shinoda
,
R.
DeVane
, and
M. L.
Klein
,
Mol. Phys.
108
,
2007
(
2010
).
71.
C.
Avendaño
,
T.
Lafitte
,
A.
Galindo
,
C. S.
Adjiman
,
G.
Jackson
, and
E. A.
Müller
,
J. Phys. Chem. B
115
,
11154
(
2011
).
72.
C.
Avendaño
,
T.
Lafitte
,
C. S.
Adjiman
,
A.
Galindo
,
E. A.
Müller
, and
G.
Jackson
,
J. Phys. Chem. B
117
,
2717
(
2013
).
73.
C. G.
Aimoli
,
E. J.
Maginn
, and
C. R. A.
Abreu
,
J. Chem. Phys.
141
,
134101
(
2014
).
74.
J. C.
Shelley
,
M. Y.
Shelley
,
R. C.
Reeder
,
S.
Bandyopadhyay
, and
M. L.
Klein
,
J. Phys. Chem. B
105
,
4464
(
2001
).
75.
J. J.
Potoff
and
D. A.
Bernard-Brunel
,
J. Phys. Chem. B
113
,
14725
(
2009
).
76.
N. S.
Ramrattan
,
C.
Avendaño
,
E. A.
Müller
, and
A.
Galindo
,
Mol. Phys.
113
,
932
(
2015
).
77.
K. S.
Pitzer
,
J. Chem. Phys.
7
,
583
(
1939
).
78.
E.
Helfand
and
S. A.
Rice
,
J. Chem. Phys.
32
,
1642
(
1960
).
79.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
80.
81.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in ‘t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
,
S. J.
Plimpton
, and
S. J.
Plimpton
,
Comput. Phys. Commun.
271
,
108171
(
2022
).
82.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
570
(
1957
).
83.
M. S.
Green
,
J. Chem. Phys.
22
,
398
(
1954
).
84.
Y.
Zhu
,
X.
Lu
,
J.
Zhou
,
Y.
Wang
, and
J.
Shi
,
Fluid Phase Equilib.
194–197
,
1141
(
2002
).
85.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
,
J. Mach. Learn. Res.
12
,
2825
(
2011
).
86.
T.
Stephens
, Gplearn: Genetic programming in python, with a scikit-learn inspired API,
2015
.
87.
J.
Šlepavičius
,
C.
Avendaño
,
B. O.
Conchúir
, and
A.
Patti
,
Phys. Rev. E
106
,
014604
(
2022
).
88.
P.
Linstrom
,
NIST Chemistry WebBook
,
NIST Standard Reference Database Vol. 69
(
National Institute of Standards and Technology
,
1997
).

Supplementary Material

You do not currently have access to this content.