Full-dimensional potential energy surfaces (PESs) based on machine learning (ML) techniques provide a means for accurate and efficient molecular simulations in the gas and condensed phase for various experimental observables ranging from spectroscopy to reaction dynamics. Here, the MLpot extension with PhysNet as the ML-based model for a PES is introduced into the newly developed pyCHARMM application programming interface. To illustrate the conception, validation, refining, and use of a typical workflow, para-chloro-phenol is considered as an example. The main focus is on how to approach a concrete problem from a practical perspective and applications to spectroscopic observables and the free energy for the –OH torsion in solution are discussed in detail. For the computed IR spectra in the fingerprint region, the computations for para-chloro-phenol in water are in good qualitative agreement with experiment carried out in CCl4. Moreover, relative intensities are largely consistent with experimental findings. The barrier for rotation of the –OH group increases from 3.5 kcal/mol in the gas phase to 4.1 kcal/mol from simulations in water due to favorable H-bonding interactions of the –OH group with surrounding water molecules.

1.
D.
Koner
,
J. C.
San Vicente Veliz
,
A.
van der Avoird
, and
M.
Meuwly
, “
Near dissociation states for H2+–He on MRCI and FCI potential energy surfaces
,”
Phys. Chem. Chem. Phys.
21
,
24976
24983
(
2019
).
2.
P. L.
Houston
,
C.
Qu
,
Q.
Yu
,
R.
Conte
,
A.
Nandi
,
J. K.
Li
, and
J. M.
Bowman
, “
PESPIP: Software to fit complex molecular and many-body potential energy surfaces with permutationally invariant polynomials
,”
J. Chem. Phys.
158
,
044109
(
2023
).
3.
B. J.
Braams
and
J. M.
Bowman
, “
Permutationally invariant potential energy surfaces in high dimensionality
,”
Int. Rev. Phys. Chem.
28
,
577
606
(
2009
).
4.
K. T.
Schuett
,
H. E.
Sauceda
,
P. J.
Kindermans
,
A.
Tkatchenko
, and
K. R.
Mueller
, “
SchNet—A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
5.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
3693
(
2019
).
6.
L.
Zhang
,
J.
Han
,
H.
Wang
,
W.
Saidi
,
R.
Car
, and
W.
E
, “
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems
,” in
Advances in Neural Information Processing Systems, Vol. 31
(Curran Associates,
2018
).
7.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017
).
8.
H. E.
Sauceda
,
S.
Chmiela
,
I.
Poltavsky
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces
,”
J. Chem. Phys.
150
,
114102
(
2019
).
9.
T. S.
Ho
and
H.
Rabitz
, “
A general method for constructing multidimensional molecular potential energy surfaces from ab initio calculations
,”
J. Chem. Phys.
104
,
2584
2597
(
1996
).
10.
T.
Hollebeek
,
T.-S.
Ho
, and
H.
Rabitz
, “
Constructing multidimensional molecular potential energy surfaces from ab initio data
,”
Annu. Rev. Phys. Chem.
50
,
537
570
(
1999
).
11.
O. T.
Unke
and
M.
Meuwly
, “
Toolkit for the construction of reproducing kernel-based representations of data: Application to multidimensional potential energy surfaces
,”
J. Chem. Inf. Model.
57
,
1923
1931
(
2017
).
12.
A. S.
Christensen
,
L. A.
Bratholm
,
F. A.
Faber
, and
O.
Anatole von Lilienfeld
, “
FCHL revisited: Faster and more accurate quantum machine learning
,”
J. Chem. Phys.
152
,
044107
(
2020
).
13.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
14.
J.
Cui
and
R. V.
Krems
, “
Efficient non-parametric fitting of potential energy surfaces for polyatomic molecules with Gaussian processes
,”
J. Phys. B: At., Mol. Opt. Phys.
49
,
224001
(
2016
).
15.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Machine learning force fields
,”
Chem. Rev.
121
,
10142
10186
(
2021
).
16.
S.
Manzhos
and
T.
Carrington
, Jr.
, “
Neural network potential energy surfaces for small molecules and reactions
,”
Chem. Rev.
121
,
10187
10217
(
2021
).
17.
M.
Meuwly
, “
Machine learning for chemical reactions
,”
Chem. Rev.
121
,
10218
10239
(
2021
).
18.
V. L.
Deringer
,
A. P.
Bartók
,
N.
Bernstein
,
D. M.
Wilkins
,
M.
Ceriotti
, and
G.
Csányi
, “
Gaussian process regression for materials and molecules
,”
Chem. Rev.
121
,
10073
10141
(
2021
).
19.
J.
Buckner
,
X.
Liu
,
A.
Chakravorty
,
Y.
Wu
,
L. F.
Cervantes
,
T. T.
Lai
, and
C. L.
Brooks
III
, “
pyCHARMM: Embedding CHARMM functionality in a Python framework
,”
J. Chem. Theory Comput.
19
,
3752
3762
(
2023
).
20.
J.
Behler
, “
Four generations of high-dimensional neural network potentials
,”
Chem. Rev.
121
,
10037
10072
(
2021
).
21.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
Ani-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
22.
I.
Kosztin
,
B.
Faber
, and
K.
Schulten
, “
Introduction to the diffusion Monte Carlo method
,”
Am. J. Phys.
64
,
633
644
(
1996
).
23.
J.
Li
,
C.
Qu
, and
J. M.
Bowman
, “
Diffusion Monte Carlo with fictitious masses finds holes in potential energy surfaces
,”
Mol. Phys.
119
,
e1976426
(
2021
).
24.
S.
Amabilino
,
L. A.
Bratholm
,
S. J.
Bennie
,
A. C.
Vaucher
,
M.
Reiher
, and
D. R.
Glowacki
, “
Training neural nets to learn reactive potential energy surfaces using interactive quantum chemistry in virtual reality
,”
J. Phys. Chem. A
123
,
4486
4499
(
2019
).
25.
S.
Amabilino
,
L. A.
Bratholm
,
S. J.
Bennie
,
M. B.
O’Connor
, and
D. R.
Glowacki
, “
Training atomic neural networks using fragment-based data generated in virtual reality
,”
J. Chem. Phys.
153
,
154105
(
2020
).
26.
B.
Huang
and
O. A.
von Lilienfeld
, “
Quantum machine learning using atom-in-molecule-based fragments selected on the fly
,”
Nat. Chem.
12
,
945
951
(
2020
).
27.
T.
Nagy
,
J.
Yosa Reyes
, and
M.
Meuwly
, “
Multisurface adiabatic reactive molecular dynamics
,”
J. Chem. Theory Comput.
10
,
1366
1375
(
2014
).
28.
S.
Käser
,
L. I.
Vazquez-Salazar
,
M.
Meuwly
, and
K.
Töpfer
, “
Neural network potentials for chemistry: Concepts, applications and prospects
,”
Digital Discovery
2
,
28
58
(
2023
).
29.
J.
Gilmer
,
S. S.
Schoenholz
,
P. F.
Riley
,
O.
Vinyals
, and
G. E.
Dahl
, “
Neural message passing for quantum chemistry
,” in
Proceedings of the 34th International Conference on Machine Learning
(
JMLR.org
,
2017
), Vol.
70
, pp.
1263
1272
.
30.
F.
Scarselli
,
M.
Gori
,
A. C.
Tsoi
,
M.
Hagenbuchner
, and
G.
Monfardini
, “
The graph neural network model
,”
IEEE Trans. Neural Network
20
,
61
80
(
2009
).
31.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Chem. Theory Comput.
32
,
1456
1465
(
2011
).
32.
N.
Lubbers
,
J. S.
Smith
, and
K.
Barros
, “
Hierarchical modeling of molecular energies using a deep neural network
,”
J. Chem. Phys.
148
,
241715
(
2018
).
33.
L. I.
Vazquez-Salazar
,
E. D.
Boittier
, and
M.
Meuwly
, “
Uncertainty quantification for predictions of atomistic neural networks
,”
Chem. Sci.
13
,
13068
13084
(
2022
).
34.
J. D.
Morrow
,
J. L. A.
Gardner
, and
V. L.
Deringer
, “
How to validate machine-learned interatomic potentials
,”
J. Chem. Phys.
158
,
121501
(
2023
).
35.
G.
Csányi
,
T.
Albaret
,
M. C.
Payne
, and
A.
De Vita
, “
Learn on the fly”: A hybrid classical and quantum-mechanical molecular dynamics simulation
,”
Phys. Rev. Lett.
93
,
175503
(
2004
).
36.
S. J.
Pan
and
Q.
Yang
, “
A survey on transfer learning
,”
IEEE Trans. Knowl. Data Eng.
22
,
1345
1359
(
2009
).
37.
J. S.
Smith
,
B. T.
Nebgen
,
R.
Zubatyuk
,
N.
Lubbers
,
C.
Devereux
,
K.
Barros
,
S.
Tretiak
,
O.
Isayev
, and
A. E.
Roitberg
, “
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
,”
Nat. Commun.
10
,
2903
(
2019
).
38.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
, “
Big Data meets quantum chemistry approximations: The Δ-machine learning approach
,”
J. Chem. Theory Comput.
11
,
2087
2096
(
2015
).
39.
Q.
Cui
,
T.
Pal
, and
L.
Xie
, “
Biomolecular QM/MM simulations: What are some of the “burning issues”
,”
J. Phys. Chem. B
125
,
689
702
(
2021
).
40.
M.
Gastegger
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of solvent effects on molecular spectra and reactions
,”
Chem. Sci.
12
,
11473
11483
(
2021
).
41.
K.
Töpfer
,
S.
Käser
, and
M.
Meuwly
, “
Double proton transfer in hydrated formic acid dimer: Interplay of spatial symmetry and solvent-generated force on reactivity
,”
Phys. Chem. Chem. Phys.
24
,
13869
13882
(
2022
).
42.
B.
Lier
,
P.
Poliak
,
P.
Marquetand
,
J.
Westermayr
, and
C.
Oostenbrink
, “
BuRNN: Buffer region neural network approach for polarizable-embedding neural network/molecular mechanics simulations
,”
J. Phys. Chem. Lett.
13
,
3812
3818
(
2022
).
43.
B. R.
Brooks
,
C. L.
Brooks
III
,
A. D.
MacKerell
, Jr.
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartels
,
S.
Boresch
et al, “
CHARMM: The biomolecular simulation program
,”
J. Comput. Chem.
30
,
1545
1614
(
2009
).
44.
K.
Vanommeslaeghe
and
A. D.
MacKerell
, “
Automation of the CHARMM general force field (CGgenFF) I: Bond perception and atom typing
,”
J. Chem. Inf. Model.
52
,
3144
3154
(
2012
).
45.
F.
Jensen
,
Introduction to Computational Chemistry
(
John Wiley & Sons
,
2017
).
46.
H. M.
Senn
and
W.
Thiel
, in
Atomistic Approaches in Modern Biology: From Quantum Chemistry to Molecular Simulations
, edited by
M.
Reiher
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2007
), pp.
173
290
.
47.
M.
Bondanza
,
M.
Nottoli
,
L.
Cupellini
,
F.
Lipparini
, and
B.
Mennucci
, “
Polarizable embedding QM/MM: The future gold standard for complex (bio)systems?
,”
Phys. Chem. Chem. Phys.
22
,
14433
14448
(
2020
).
48.
J.
Ho
,
Y.
Shao
, and
J.
Kato
, “
Do better quality embedding potentials accelerate the convergence of QM/MM models? The case of solvated acid clusters
,”
Molecules
23
,
2466
(
2018
).
49.
T.
Bereau
,
C.
Kramer
, and
M.
Meuwly
, “
Leveraging symmetries of static atomic multipole electrostatics in molecular dynamics simulations
,”
J. Chem. Theory Comput.
9
,
5450
5459
(
2013
).
50.
E. D.
Boittier
,
M.
Devereux
, and
M.
Meuwly
, “
Molecular dynamics with conformationally dependent, distributed charges
,”
J. Chem. Theory Comput.
18
,
7544
7554
(
2022
).
51.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
, “
GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
,”
J. Chem. Theory Comput.
15
,
1652
1671
(
2019
).
52.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
et al, MOLPRO, version 2020, a package of ab initio programs,
2020
.
53.
S. J.
Reddi
,
S.
Kale
, and
S.
Kumar
, “
On the convergence of adam and beyond
,” arXiv:1904.09237 (
2019
).
54.
S.
Käser
and
M.
Meuwly
, “
Transfer learned potential energy surfaces: Accurate anharmonic vibrational dynamics and dissociation energies for the formic acid monomer and dimer
,”
Phys. Chem. Chem. Phys.
24
,
5269
5281
(
2022
).
55.
S.
Käser
,
O. T.
Unke
, and
M.
Meuwly
, “
Reactive dynamics and spectroscopy of hydrogen transfer from neural network-based reactive potential energy surfaces
,”
New J. Phys.
22
,
055002
(
2020
).
56.
S.
Käser
and
M.
Meuwly
, “
Transfer-learned potential energy surfaces: Toward microsecond-scale molecular dynamics simulations in the gas phase at CCSD(T) quality
,”
J. Chem. Phys.
158
,
214301
(
2023
).
57.
M. E.
Taylor
and
P.
Stone
, “
Transfer learning for reinforcement learning domains: A survey
,”
J. Mach. Learn. Res.
10
,
1633
1685
(
2009
).
58.
P. O.
Dral
,
A.
Owens
,
A.
Dral
, and
G.
Csányi
, “
Hierarchical machine learning of potential energy surfaces
,”
J. Chem. Phys.
152
,
204110
(
2020
).
59.
K. A.
Nguyen
,
I.
Rossi
, and
D. G.
Truhlar
, “
A dual-level Shepard interpolation method for generating potential energy surfaces for dynamics calculations
,”
J. Chem. Phys.
103
,
5522
5530
(
1995
).
60.
A.
Nandi
,
C.
Qu
, and
J. M.
Bowman
, “
Using gradients in permutationally invariant polynomial potential fitting: A demonstration for CH4 using as few as 100 configurations
,”
J. Chem. Theory Comput.
15
,
2826
2835
(
2019
).
61.
S.
Käser
,
E. D.
Boittier
,
M.
Upadhyay
, and
M.
Meuwly
, “
Transfer learning to CCSD(T): Accurate anharmonic frequencies from machine learning models
,”
J. Chem. Theory Comput.
17
,
3687
3699
(
2021
).
62.
J. M.
Bowman
,
C.
Qu
,
R.
Conte
,
A.
Nandi
,
P. L.
Houston
, and
Q.
Yu
, “
Δ-machine learned potential energy surfaces and force fields
,”
J. Chem. Theory Comput.
19
,
1
17
(
2023
).
63.
S.
Käser
,
J. O.
Richardson
, and
M.
Meuwly
, “
Transfer learning for affordable and high-quality tunneling splittings from instanton calculations
,”
J. Chem. Theory Comput.
18
,
6840
6850
(
2022
).
64.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
65.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
, “
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Chem. Phys.
23
,
327
341
(
1977
).
66.
R.
Ramírez
,
T.
López-Ciudad
,
P.
Kumar P
, and
D.
Marx
, “
Quantum corrections to classical time-correlation functions: Hydrogen bonding and anharmonic floppy modes
,”
J. Chem. Phys.
121
,
3973
3983
(
2004
).
67.
A.
Smith
, “
Chapter IR spectrum
,” in
NIST Chemistry WebBook
,
NIST Standard Reference Database Number Vol. 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
NIST
, 2023).
68.
W.
Zierkiewicz
,
D.
Michalska
, and
T.
Zeegers-Huyskens
, “
Molecular structures and infrared spectra of p-chlorophenol and p-bromophenol. Theoretical and experimental studies
,”
J. Phys. Chem. A
104
,
11685
11692
(
2000
).
69.
Q.
Yu
and
J. M.
Bowman
, “
Classical, thermostated ring polymer, and quantum VSCF/VCI calculations of IR spectra of H7O3+ and H9O4+ (Eigen) and comparison with experiment
,”
J. Phys. Chem. A
123
,
1399
1409
(
2019
).
70.
A.
Nejad
and
M. A.
Suhm
, “
Concerted pair motion due to double hydrogen bonding: The formic acid dimer case
,”
J. Indian Inst. Sci.
100
,
5
19
(
2020
).
71.
Z.-H.
Xu
and
M.
Meuwly
, “
Vibrational spectroscopy and proton transfer dynamics in protonated oxalate
,”
J. Phys. Chem. A
121
,
5389
5398
(
2017
).
72.
Y.
Guo
,
D. L.
Thompson
, and
T. D.
Sewell
, “
Analysis of the zero-point energy problem in classical trajectory simulations
,”
J. Chem. Phys.
104
,
576
582
(
1996
).
73.
W. F.
van Gunsteren
and
A. E.
Mark
, “
Validation of molecular dynamics simulation
,”
J. Chem. Phys.
108
,
6109
6116
(
1998
).
74.
W. F.
van Gunsteren
,
X.
Daura
,
N.
Hansen
,
A. E.
Mark
,
C.
Oostenbrink
,
S.
Riniker
, and
L. J.
Smith
, “
Validation of molecular simulation: An overview of issues
,”
Angew. Chem., Int. Ed.
57
,
884
902
(
2018
).
75.
M.
Devereux
,
S.
Raghunathan
,
D. G.
Fedorov
, and
M.
Meuwly
, “
A novel, computationally efficient multipolar model employing distributed charges for molecular dynamics simulations
,”
J. Chem. Theory Comput.
10
,
4229
(
2014
).
76.
O. T.
Unke
,
M.
Devereux
, and
M.
Meuwly
, “
Minimal distributed charges: Multipolar quality at the cost of point charge electrostatics
,”
J. Chem. Phys.
147
,
161712
(
2017
).
77.
M.
Devereux
,
M.
Pezzella
,
S.
Raghunathan
, and
M.
Meuwly
, “
Polarizable multipolar molecular dynamics using distributed point charges
,”
J. Chem. Theory Comput.
16
,
7267
7280
(
2020
).
78.
T.
Clark
,
M.
Hennemann
,
J. S.
Murray
, and
P.
Politzer
, “
Halogen bonding: The σ-hole
,”
J. Mol. Model.
13
,
291
296
(
2007
).
79.
S. M.
Salehi
,
S.
Käser
,
K.
Töpfer
,
P.
Diamantis
,
R.
Pfister
,
P.
Hamm
,
U.
Rothlisberger
, and
M.
Meuwly
, “
Hydration dynamics and IR spectroscopy of 4-fluorophenol
,”
Phys. Chem. Chem. Phys.
24
,
26046
26060
(
2022
).
80.
K.
El Hage
,
R. J.
Bemish
, and
M.
Meuwly
, “
From in silica to in silico: Retention thermodynamics at solid-liquid interfaces
,”
Phys. Chem. Chem. Phys.
20
,
18610
18622
(
2018
).
81.
S.
Käser
,
O. T.
Unke
, and
M.
Meuwly
, “
Isomerization and decomposition reactions of acetaldehyde relevant to atmospheric processes from dynamics simulations on neural network-based potential energy surfaces
,”
J. Chem. Phys.
152
,
214304
(
2020
).
82.
M.
Upadhyay
and
M.
Meuwly
, “
Thermal and vibrationally activated decomposition of the syn-CH3CHOO criegee intermediate
,”
ACS Earth Space Chem.
5
,
3396
3406
(
2021
).
83.
J.
Westermayr
,
M.
Gastegger
,
D.
Vörös
,
L.
Panzenboeck
,
F.
Joerg
,
L.
González
, and
P.
Marquetand
, “
Deep learning study of tyrosine reveals that roaming can lead to photodamage
,”
Nat. Chem.
14
,
914
919
(
2022
).
84.
J.
Behler
, “
Constructing high-dimensional neural network potentials: A tutorial review
,”
Int. J. Quantum Chem.
115
,
1032
1050
(
2015
).
85.
C.
Qu
,
Q.
Yu
, and
J. M.
Bowman
, “
Permutationally invariant potential energy surfaces
,”
Annu. Rev. Phys. Chem.
69
,
151
175
(
2018
).
86.
K.
Zinovjev
, “
Electrostatic embedding of machine learning potentials
,”
J. Chem. Theory Comput.
19
,
1888
1897
(
2023
).
87.
M.
Meuwly
, “
On the influence of the local environment on the CO stretching frequencies in native myoglobin: Assignment of the B-states in MbCO
,”
ChemPhysChem
7
,
2061
2063
(
2006
).
88.
V.
Hänninen
,
G.
Murdachaew
,
G. M.
Nathanson
,
R. B.
Gerber
, and
L.
Halonen
, “
Ab initio molecular dynamics studies of formic acid dimer colliding with liquid water
,”
Phys. Chem. Chem. Phys.
20
,
23717
23725
(
2018
).
89.
K. T.
Schütt
,
M.
Gastegger
,
A.
Tkatchenko
,
K.-R.
Müller
, and
R. J.
Maurer
, “
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
,”
Nat. Commun.
10
,
5024
(
2019
).
90.
N. M.
Kidwell
,
H.
Li
,
X.
Wang
,
J. M.
Bowman
, and
M. I.
Lester
, “
Unimolecular dissociation dynamics of vibrationally activated CH3CHOO criegee intermediates to OH radical products
,”
Nat. Chem.
8
,
509
514
(
2016
).
91.
M.
Soloviov
and
M.
Meuwly
, “
Reproducing kernel potential energy surfaces in biomolecular simulations: Nitric oxide binding to myoglobin
,”
J. Chem. Phys.
143
,
105103
(
2015
).
92.
M.
Soloviov
,
A. K.
Das
, and
M.
Meuwly
, “
Structural interpretation of metastable states in myoglobin-NO
,”
Angew. Chem., Int. Ed.
55
,
10126
10130
(
2016
).
93.
A. K.
Das
and
M.
Meuwly
, “
Kinetic analysis and structural interpretation of competitive ligand binding for NO dioxygenation in truncated hemoglobinn
,”
Angew. Chem., Int. Ed.
57
,
3509
3513
(
2018
).
You do not currently have access to this content.