Molecular dynamics (MD) is an extremely powerful, highly effective, and widely used approach to understanding the nature of chemical processes in atomic details for proteins. The accuracy of results from MD simulations is highly dependent on force fields. Currently, molecular mechanical (MM) force fields are mainly utilized in MD simulations because of their low computational cost. Quantum mechanical (QM) calculation has high accuracy, but it is exceedingly time consuming for protein simulations. Machine learning (ML) provides the capability for generating accurate potential at the QM level without increasing much computational effort for specific systems that can be studied at the QM level. However, the construction of general machine learned force fields, needed for broad applications and large and complex systems, is still challenging. Here, general and transferable neural network (NN) force fields based on CHARMM force fields, named CHARMM-NN, are constructed for proteins by training NN models on 27 fragments partitioned from the residue-based systematic molecular fragmentation (rSMF) method. The NN for each fragment is based on atom types and uses new input features that are similar to MM inputs, including bonds, angles, dihedrals, and non-bonded terms, which enhance the compatibility of CHARMM-NN to MM MD and enable the implementation of CHARMM-NN force fields in different MD programs. While the main part of the energy of the protein is based on rSMF and NN, the nonbonded interactions between the fragments and with water are taken from the CHARMM force field through mechanical embedding. The validations of the method for dipeptides on geometric data, relative potential energies, and structural reorganization energies demonstrate that the CHARMM-NN local minima on the potential energy surface are very accurate approximations to QM, showing the success of CHARMM-NN for bonded interactions. However, the MD simulations on peptides and proteins indicate that more accurate methods to represent protein–water interactions in fragments and non-bonded interactions between fragments should be considered in the future improvement of CHARMM-NN, which can increase the accuracy of approximation beyond the current mechanical embedding QM/MM level.

1.
M.
Karplus
and
J. A.
McCammon
, “
Molecular dynamics simulations of biomolecules
,”
Nat. Struct. Biol.
9
,
646
652
(
2002
).
2.
S. A.
Adcock
and
J. A.
McCammon
, “
Molecular dynamics: Survey of methods for simulating the activity of proteins
,”
Chem. Rev.
106
,
1589
1615
(
2006
).
3.
D. M.
Zuckerman
, “
Equilibrium sampling in biomolecular simulations
,”
Annu. Rev. Biophys.
40
,
41
62
(
2011
).
4.
W. F.
van Gunsteren
,
X.
Daura
,
N.
Hansen
,
A. E.
Mark
,
C.
Oostenbrink
,
S.
Riniker
, and
L. J.
Smith
, “
Validation of molecular simulation: An overview of issues
,”
Angew. Chem., Int. Ed.
57
,
884
902
(
2018
).
5.
S. A.
Hollingsworth
and
R. O.
Dror
, “
Molecular dynamics simulation for all
,”
Neuron
99
,
1129
1143
(
2018
).
6.
A. D.
Mackerell
, “
Empirical force fields for biological macromolecules: Overview and issues
,”
J. Comput. Chem.
25
,
1584
1604
(
2004
).
7.
W. L.
Jorgensen
and
J.
Tirado-Rives
, “
Potential energy functions for atomic-level simulations of water and organic and biomolecular systems
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
6665
6670
(
2005
).
8.
S.
Riniker
, “
Fixed-charge atomistic force fields for molecular dynamics simulations in the condensed phase: An overview
,”
J. Chem. Inf. Model.
58
,
565
578
(
2018
).
9.
X.
Zhu
,
P. E. M.
Lopes
, and
A. D.
MacKerell
, “
Recent developments and applications of the CHARMM force fields
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
167
185
(
2012
).
10.
T.
Fröhlking
,
M.
Bernetti
,
N.
Calonaci
, and
G.
Bussi
, “
Toward empirical force fields that match experimental observables
,”
J. Chem. Phys.
152
,
230902
(
2020
).
11.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
,
5179
5197
(
1995
).
12.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
, “
How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
,”
J. Comput. Chem.
21
,
1049
1074
(
2000
).
13.
J. A.
Maier
,
C.
Martinez
,
K.
Kasavajhala
,
L.
Wickstrom
,
K. E.
Hauser
, and
C.
Simmerling
, “
ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB
,”
J. Chem. Theory Comput.
11
,
3696
3713
(
2015
).
14.
C.
Tian
,
K.
Kasavajhala
,
K. A. A.
Belfon
,
L.
Raguette
,
H.
Huang
,
A. N.
Migues
,
J.
Bickel
,
Y.
Wang
,
J.
Pincay
, and
Q.
Wu
, “
ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution
,”
J. Chem. Theory Comput.
16
,
528
552
(
2019
).
15.
A. D.
MacKerell
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiórkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins
,”
J. Phys. Chem. B
102
,
3586
3616
(
1998
).
16.
A. D.
Mackerell
,
M.
Feig
, and
C. L.
Brooks
, “
Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations
,”
J. Comput. Chem.
25
,
1400
1415
(
2004
).
17.
R. B.
Best
,
X.
Zhu
,
J.
Shim
,
P. E. M.
Lopes
,
J.
Mittal
,
M.
Feig
, and
A. D.
MacKerell
, “
Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles
,”
J. Chem. Theory Comput.
8
,
3257
3273
(
2012
).
18.
J.
Huang
,
S.
Rauscher
,
G.
Nawrocki
,
T.
Ran
,
M.
Feig
,
B. L.
de Groot
,
H.
Grubmüller
, and
A. D.
MacKerell
, “
CHARMM36m: An improved force field for folded and intrinsically disordered proteins
,”
Nat. Methods
14
,
71
73
(
2017
).
19.
L. D.
Schuler
,
X.
Daura
, and
W. F.
Van Gunsteren
, “
An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase
,”
J. Comput. Chem.
22
,
1205
1218
(
2001
).
20.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
Van Gunsteren
, “
A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6
,”
J. Comput. Chem.
25
,
1656
1676
(
2004
).
21.
T. A.
Soares
,
P. H.
Hünenberger
,
M. A.
Kastenholz
,
V.
Kräutler
,
T.
Lenz
,
R. D.
Lins
,
C.
Oostenbrink
, and
W. F.
van Gunsteren
, “
An improved nucleic acid parameter set for the GROMOS force field
,”
J. Comput. Chem.
26
,
725
737
(
2005
).
22.
N.
Schmid
,
A. P.
Eichenberger
,
A.
Choutko
,
S.
Riniker
,
M.
Winger
,
A. E.
Mark
, and
W. F.
van Gunsteren
, “
Definition and testing of the GROMOS force-field versions 54A7 and 54B7
,”
Eur. Biophys. J.
40
,
843
856
(
2011
).
23.
W. L.
Jorgensen
and
J.
Tirado-Rives
, “
The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin
,”
J. Am. Chem. Soc.
110
,
1657
1666
(
1988
).
24.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
25.
G. A.
Kaminski
,
R. A.
Friesner
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides
,”
J. Phys. Chem. B
105
,
6474
6487
(
2001
).
26.
M. J.
Robertson
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
Improved peptide and protein torsional energetics with the OPLS-AA force field
,”
J. Chem. Theory Comput.
11
,
3499
3509
(
2015
).
27.
C. M.
Baker
, “
Polarizable force fields for molecular dynamics simulations of biomolecules
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
241
254
(
2015
).
28.
S.
Patel
and
C. L.
Brooks
III
, “
Fluctuating charge force fields: Recent developments and applications from small molecules to macromolecular biological systems
,”
Mol. Simul.
32
,
231
249
(
2006
).
29.
J. A.
Lemkul
,
J.
Huang
,
B.
Roux
, and
A. D.
MacKerell
, “
An empirical polarizable force field based on the classical Drude oscillator model: Development history and recent applications
,”
Chem. Rev.
116
,
4983
5013
(
2016
).
30.
J.
Wang
,
P.
Cieplak
,
J.
Li
,
J.
Wang
,
Q.
Cai
,
M.
Hsieh
,
H.
Lei
,
R.
Luo
, and
Y.
Duan
, “
Development of polarizable models for molecular mechanical calculations II: Induced dipole models significantly improve accuracy of intermolecular interaction energies
,”
J. Phys. Chem. B
115
,
3100
3111
(
2011
).
31.
Y.
Shi
,
Z.
Xia
,
J.
Zhang
,
R.
Best
,
C.
Wu
,
J. W.
Ponder
, and
P.
Ren
, “
Polarizable atomic multipole-based amoeba force field for proteins
,”
J. Chem. Theory Comput.
9
,
4046
4063
(
2013
).
32.
K.
Lindorff-Larsen
,
P.
Maragakis
,
S.
Piana
,
M. P.
Eastwood
,
R. O.
Dror
, and
D. E.
Shaw
, “
Systematic validation of protein force fields against experimental data
,”
PLoS One
7
,
e32131
(
2012
).
33.
P. S.
Nerenberg
and
T.
Head-Gordon
, “
New developments in force fields for biomolecular simulations
,”
Curr. Opin. Struct. Biol.
49
,
129
138
(
2018
).
34.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
, “
How robust are protein folding simulations with respect to force field parameterization?
,”
Biophys. J.
100
,
L47
L49
(
2011
).
35.
K. A.
McKiernan
,
B. E.
Husic
, and
V. S.
Pande
, “
Modeling the mechanism of CLN025 beta-hairpin formation
,”
J. Chem. Phys.
147
,
104107
(
2017
).
36.
P. S.
Nerenberg
,
B.
Jo
,
C.
So
,
A.
Tripathy
, and
T.
Head-Gordon
, “
Optimizing solute-water van der Waals interactions to reproduce solvation free energies
,”
J. Phys. Chem. B
116
,
4524
4534
(
2012
).
37.
R. B.
Best
,
W.
Zheng
, and
J.
Mittal
, “
Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association
,”
J. Chem. Theory Comput.
10
,
5113
5124
(
2014
).
38.
C. J.
Oldfield
and
A. K.
Dunker
, “
Intrinsically disordered proteins and intrinsically disordered protein regions
,”
Annu. Rev. Biochem.
83
,
553
584
(
2014
).
39.
V. N.
Uversky
, “
Introduction to intrinsically disordered proteins (IDPs)
,”
Chem. Rev.
114
,
6557
6560
(
2014
).
40.
S.-H.
Chong
,
P.
Chatterjee
, and
S.
Ham
, “
Computer simulations of intrinsically disordered proteins
,”
Annu. Rev. Phys. Chem.
68
,
117
134
(
2017
).
41.
S.
Bhattacharya
and
X.
Lin
, “
Recent advances in computational protocols addressing intrinsically disordered proteins
,”
Biomolecules
9
,
146
(
2019
).
42.
W.
Wang
, “
Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins
,”
Phys. Chem. Chem. Phys.
23
,
777
784
(
2021
).
43.
R. B.
Best
and
J.
Mittal
, “
Protein simulations with an optimized water model: Cooperative helix formation and temperature-induced unfolded state collapse
,”
J. Phys. Chem. B
114
,
14916
14923
(
2010
).
44.
R. B.
Best
and
J.
Mittal
, “
Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: Similarities and differences
,”
Proteins: Struct., Funct., Bioinf.
79
,
1318
1328
(
2011
).
45.
J.
Henriques
,
C.
Cragnell
, and
M.
Skepö
, “
Molecular dynamics simulations of intrinsically disordered proteins: Force field evaluation and comparison with experiment
,”
J. Chem. Theory Comput.
11
,
3420
3431
(
2015
).
46.
Z. A.
Levine
and
J.-E.
Shea
, “
Simulations of disordered proteins and systems with conformational heterogeneity
,”
Curr. Opin. Struct. Biol.
43
,
95
103
(
2017
).
47.
J.
Huang
and
A. D.
MacKerell
, “
Force field development and simulations of intrinsically disordered proteins
,”
Curr. Opin. Struct. Biol.
48
,
40
48
(
2018
).
48.
J.
Mu
,
H.
Liu
,
J.
Zhang
,
R.
Luo
, and
H.-F.
Chen
, “
Recent force field strategies for intrinsically disordered proteins
,”
J. Chem. Inf. Model.
61
,
1037
1047
(
2021
).
49.
D.
Song
,
W.
Wang
,
W.
Ye
,
D.
Ji
,
R.
Luo
, and
H.-F.
Chen
, “
ff14IDPs force field improving the conformation sampling of intrinsically disordered proteins
,”
Chem. Biol. Drug Des.
89
,
5
15
(
2017
).
50.
H.
Liu
,
D.
Song
,
H.
Lu
,
R.
Luo
, and
H.-F.
Chen
, “
Intrinsically disordered protein-specific force field CHARMM36IDPSFF
,”
Chem. Biol. Drug Des.
92
,
1722
1735
(
2018
).
51.
H.
Liu
,
D.
Song
,
Y.
Zhang
,
S.
Yang
,
R.
Luo
, and
H.-F.
Chen
, “
Extensive tests and evaluation of the CHARMM36IDPSFF force field for intrinsically disordered proteins and folded proteins
,”
Phys. Chem. Chem. Phys.
21
,
21918
21931
(
2019
).
52.
S.
Yang
,
H.
Liu
,
Y.
Zhang
,
H.
Lu
, and
H.
Chen
, “
Residue-specific force field improving the sample of intrinsically disordered proteins and folded proteins
,”
J. Chem. Inf. Model.
59
,
4793
4805
(
2019
).
53.
W.
Kang
,
F.
Jiang
, and
Y.-D.
Wu
, “
Universal implementation of a residue-specific force field based on CMAP potentials and free energy decomposition
,”
J. Chem. Theory Comput.
14
,
4474
4486
(
2018
).
54.
D.
Song
,
H.
Liu
,
R.
Luo
, and
H.-F.
Chen
, “
Environment-specific force field for intrinsically disordered and ordered proteins
,”
J. Chem. Inf. Model.
60
,
2257
2267
(
2020
).
55.
P. S.
Nerenberg
and
T.
Head-Gordon
, “
Optimizing protein–solvent force fields to reproduce intrinsic conformational preferences of model peptides
,”
J. Chem. Theory Comput.
7
,
1220
1230
(
2011
).
56.
D.
Mercadante
,
S.
Milles
,
G.
Fuertes
,
D. I.
Svergun
,
E. A.
Lemke
, and
F.
Gräter
, “
Kirkwood–Buff approach rescues overcollapse of a disordered protein in canonical protein force fields
,”
J. Phys. Chem. B
119
,
7975
7984
(
2015
).
57.
E. A.
Ploetz
,
S.
Karunaweera
,
N.
Bentenitis
,
F.
Chen
,
S.
Dai
,
M. B.
Gee
,
Y.
Jiao
,
M.
Kang
,
N. L.
Kariyawasam
,
N.
Naleem
,
S.
Weerasinghe
, and
P. E.
Smith
, “
Kirkwood–Buff-derived force field for peptides and proteins: Philosophy and development of KBFF20
,”
J. Chem. Theory Comput.
17
,
2964
2990
(
2021
).
58.
E. A.
Ploetz
,
S.
Karunaweera
, and
P. E.
Smith
, “
Kirkwood–Buff-derived force field for peptides and proteins: Applications of KBFF20
,”
J. Chem. Theory Comput.
17
,
2991
3009
(
2021
).
59.
S.
Kmiecik
,
D.
Gront
,
M.
Kolinski
,
L.
Wieteska
,
A. E.
Dawid
, and
A.
Kolinski
, “
Coarse-grained protein models and their applications
,”
Chem. Rev.
116
,
7898
7936
(
2016
).
60.
A. P.
Latham
and
B.
Zhang
, “
Unifying coarse-grained force fields for folded and disordered proteins
,”
Curr. Opin. Struct. Biol.
72
,
63
70
(
2022
).
61.
H.
Wu
,
P. G.
Wolynes
, and
G. A.
Papoian
, “
AWSEM-IDP: A coarse-grained force field for intrinsically disordered proteins
,”
J. Phys. Chem. B
122
,
11115
11125
(
2018
).
62.
A. P.
Latham
and
B.
Zhang
, “
Maximum entropy optimized force field for intrinsically disordered proteins
,”
J. Chem. Theory Comput.
16
,
773
781
(
2020
).
63.
G.
König
and
S.
Riniker
, “
On the faithfulness of molecular mechanics representations of proteins towards quantum-mechanical energy surfaces
,”
Interface Focus
10
,
20190121
(
2020
).
64.
V.
Botu
,
R.
Batra
,
J.
Chapman
, and
R.
Ramprasad
, “
Machine learning force fields: Construction, validation, and outlook
,”
J. Phys. Chem. C
121
,
511
522
(
2017
).
65.
T. D.
Huan
,
R.
Batra
,
J.
Chapman
,
S.
Krishnan
,
L.
Chen
, and
R.
Ramprasad
, “
A universal strategy for the creation of machine learning-based atomistic force fields
,”
npj Comput. Mater.
3
,
37
(
2017
).
66.
T.
Mueller
,
A.
Hernandez
, and
C.
Wang
, “
Machine learning for interatomic potential models
,”
J. Chem. Phys.
152
,
050902
(
2020
).
67.
S.
Manzhos
and
T.
Carrington
, “
Neural network potential energy surfaces for small molecules and reactions
,”
Chem. Rev.
121
,
10187
10217
(
2021
).
68.
I.
Poltavsky
and
A.
Tkatchenko
, “
Machine learning force fields: Recent advances and remaining challenges
,”
J. Phys. Chem. Lett.
12
,
6551
6564
(
2021
).
69.
Y.
Li
,
H.
Li
,
F. C.
Pickard
,
B.
Narayanan
,
F. G.
Sen
,
M. K. Y.
Chan
,
S. K. R. S.
Sankaranarayanan
,
B. R.
Brooks
, and
B.
Roux
, “
Machine learning force field parameters from ab initio data
,”
J. Chem. Theory Comput.
13
,
4492
4503
(
2017
).
70.
E.
Heid
,
M.
Fleck
,
P.
Chatterjee
,
C.
Schröder
, and
A. D.
MacKerell
, “
Toward prediction of electrostatic parameters for force fields that explicitly treat electronic polarization
,”
J. Chem. Theory Comput.
15
,
2460
2469
(
2019
).
71.
O.
Demerdash
,
U. R.
Shrestha
,
L.
Petridis
,
J. C.
Smith
,
J. C.
Mitchell
, and
A.
Ramanathan
, “
Using small-angle scattering data and parametric machine learning to optimize force field parameters for intrinsically disordered proteins
,”
Front. Mol. Biosci.
6
,
64
(
2019
).
72.
R.
Galvelis
,
S.
Doerr
,
J. M.
Damas
,
M. J.
Harvey
, and
G.
De Fabritiis
, “
A scalable molecular force field parameterization method based on density functional theory and quantum-level machine learning
,”
J. Chem. Inf. Model.
59
,
3485
3493
(
2019
).
73.
V. L.
Deringer
,
A. P.
Bartók
,
N.
Bernstein
,
D. M.
Wilkins
,
M.
Ceriotti
, and
G.
Csányi
, “
Gaussian process regression for materials and molecules
,”
Chem. Rev.
121
,
10073
10141
(
2021
).
74.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
75.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017
).
76.
S.
Chmiela
,
H. E.
Sauceda
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Towards exact molecular dynamics simulations with machine-learned force fields
,”
Nat. Commun.
9
,
3887
(
2018
).
77.
H. E.
Sauceda
,
S.
Chmiela
,
I.
Poltavsky
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces
,”
J. Chem. Phys.
150
,
114102
(
2019
).
78.
H. E.
Sauceda
,
M.
Gastegger
,
S.
Chmiela
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Molecular force fields with gradient-domain machine learning (GDML): Comparison and synergies with classical force fields
,”
J. Chem. Phys.
153
,
124109
(
2020
).
79.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
80.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
81.
S. A.
Ghasemi
,
A.
Hofstetter
,
S.
Saha
, and
S.
Goedecker
, “
Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
,”
Phys. Rev. B
92
,
045131
(
2015
).
82.
T. W.
Ko
,
J. A.
Finkler
,
S.
Goedecker
, and
J.
Behler
, “
General-purpose machine learning potentials capturing nonlocal charge transfer
,”
Acc. Chem. Res.
54
,
808
817
(
2021
).
83.
T. W.
Ko
,
J. A.
Finkler
,
S.
Goedecker
, and
J.
Behler
, “
A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer
,”
Nat. Commun.
12
,
398
(
2021
).
84.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
85.
K.
Yao
,
J. E.
Herr
,
D. W.
Toth
,
R.
McKintyre
, and
J.
Parkhill
, “
The TensorMol-0.1 model chemistry: A neural network augmented with long-range physics
,”
Chem. Sci.
9
,
2261
2269
(
2018
).
86.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
E.
Weinan
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
,
143001
(
2018
).
87.
L.
Shen
,
J.
Wu
, and
W.
Yang
, “
Multiscale quantum mechanics/molecular mechanics simulations with neural networks
,”
J. Chem. Theory Comput.
12
,
4934
4946
(
2016
).
88.
L.
Shen
and
W.
Yang
, “
Molecular dynamics simulations with quantum mechanics/molecular mechanics and adaptive neural networks
,”
J. Chem. Theory Comput.
14
,
1442
1455
(
2018
).
89.
H.
Wang
and
W.
Yang
, “
Force field for water based on neural network
,”
J. Phys. Chem. Lett.
9
,
3232
3240
(
2018
).
90.
Y.
Zhang
,
C.
Hu
, and
B.
Jiang
, “
Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired representation
,”
J. Phys. Chem. Lett.
10
,
4962
4967
(
2019
).
91.
Y.
Zhang
,
C.
Hu
, and
B.
Jiang
, “
Accelerating atomistic simulations with piecewise machine-learned ab initio potentials at a classical force field-like cost
,”
Phys. Chem. Chem. Phys.
23
,
1815
1821
(
2021
).
92.
J.
Zhang
,
Y.-K.
Lei
,
Z.
Zhang
,
J.
Chang
,
M.
Li
,
X.
Han
,
L.
Yang
,
Y. I.
Yang
, and
Y. Q.
Gao
, “
A perspective on deep learning for molecular modeling and simulations
,”
J. Phys. Chem. A
124
,
6745
6763
(
2020
).
93.
M. K.
Matlock
,
M.
Hoffman
,
N. L.
Dang
,
D. L.
Folmsbee
,
L. A.
Langkamp
,
G. R.
Hutchison
,
N.
Kumar
,
K.
Sarullo
, and
S. J.
Swamidass
, “
Deep learning coordinate-free quantum chemistry
,”
J. Phys. Chem. A
125
,
8978
8986
(
2021
).
94.
C. A.
Grambow
,
L.
Pattanaik
, and
W. H.
Green
, “
Deep learning of activation energies
,”
J. Phys. Chem. Lett.
11
,
2992
2997
(
2020
).
95.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K. R.
Müller
, and
A.
Tkatchenko
, “
Quantum-chemical insights from deep tensor neural networks
,”
Nat. Commun.
8
,
13890
(
2017
).
96.
J.
Lu
,
C.
Wang
, and
Y.
Zhang
, “
Predicting molecular energy using force-field optimized geometries and atomic vector representations learned from an improved deep tensor neural network
,”
J. Chem. Theory Comput.
15
,
4113
4121
(
2019
).
97.
K. T.
Schütt
,
H. E.
Sauceda
,
P. J.
Kindermans
,
A.
Tkatchenko
, and
K. R.
Müller
, “
SchNet—A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
98.
M.
Gastegger
,
K. T.
Schütt
, and
K.-R.
Máller
, “
Machine learning of solvent effects on molecular spectra and reactions
,”
Chem. Sci.
12
,
11473
11483
(
2021
).
99.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
3693
(
2019
).
100.
J.
Lu
,
S.
Xia
,
J.
Lu
, and
Y.
Zhang
, “
Dataset construction to explore chemical space with 3D geometry and deep learning
,”
J. Chem. Inf. Model.
61
,
1095
1104
(
2021
).
101.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Machine learning force fields
,”
Chem. Rev.
121
,
10142
10186
(
2021
).
102.
M. A.
Collins
and
R. P. A.
Bettens
, “
Energy-based molecular fragmentation methods
,”
Chem. Rev.
115
,
5607
5642
(
2015
).
103.
W.
Yang
, “
Direct calculation of electron density in density-functional theory
,”
Phys. Rev. Lett.
66
,
1438
1441
(
1991
).
104.
E. E.
Dahlke
and
D. G.
Truhlar
, “
Electrostatically embedded many-body expansion for large systems, with applications to water clusters
,”
J. Chem. Theory Comput.
3
,
46
53
(
2007
).
105.
N. J.
Mayhall
and
K.
Raghavachari
, “
Many-overlapping-body (MOB) expansion: A generalized many body expansion for nondisjoint monomers in molecular fragmentation calculations of covalent molecules
,”
J. Chem. Theory Comput.
8
,
2669
2675
(
2012
).
106.
R. M.
Richard
and
J. M.
Herbert
, “
A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory
,”
J. Chem. Phys.
137
,
064113
(
2012
).
107.
K.
Raghavachari
and
A.
Saha
, “
Accurate composite and fragment-based quantum chemical models for large molecules
,”
Chem. Rev.
115
,
5643
5677
(
2015
).
108.
V.
Deev
and
M. A.
Collins
, “
Approximate ab initio energies by systematic molecular fragmentation
,”
J. Chem. Phys.
122
,
154102
(
2005
).
109.
M. A.
Addicoat
and
M. A.
Collins
, “
Accurate treatment of nonbonded interactions within systematic molecular fragmentation
,”
J. Chem. Phys.
131
,
104103
(
2009
).
110.
M. A.
Collins
, “
Molecular forces, geometries, and frequencies by systematic molecular fragmentation including embedded charges
,”
J. Chem. Phys.
141
,
094108
(
2014
).
111.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
, “
Fragmentation methods: A route to accurate calculations on large systems
,”
Chem. Rev.
112
,
632
672
(
2012
).
112.
D. W.
Zhang
and
J. Z. H.
Zhang
, “
Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein–molecule interaction energy
,”
J. Chem. Phys.
119
,
3599
3605
(
2003
).
113.
A. M.
Gao
,
D. W.
Zhang
,
J. Z. H.
Zhang
, and
Y.
Zhang
, “
An efficient linear scaling method for ab initio calculation of electron density of proteins
,”
Chem. Phys. Lett.
394
,
293
297
(
2004
).
114.
X.
He
and
J. Z. H.
Zhang
, “
A new method for direct calculation of total energy of protein
,”
J. Chem. Phys.
122
,
031103
(
2004
).
115.
J.
Liu
,
T.
Zhu
,
X.
Wang
,
X.
He
, and
J. Z. H.
Zhang
, “
Quantum fragment based ab initio molecular dynamics for proteins
,”
J. Chem. Theory Comput.
11
,
5897
5905
(
2015
).
116.
J.
Gao
, “
Toward a molecular orbital derived empirical potential for liquid simulations
,”
J. Phys. Chem. B
101
,
657
663
(
1997
).
117.
J.
Gao
, “
A molecular-orbital derived polarization potential for liquid water
,”
J. Chem. Phys.
109
,
2346
2354
(
1998
).
118.
W.
Xie
and
J.
Gao
, “
Design of a next generation force field: The X-POL potential
,”
J. Chem. Theory Comput.
3
,
1890
1900
(
2007
).
119.
W.
Xie
,
M.
Orozco
,
D. G.
Truhlar
, and
J.
Gao
, “
X-POL potential: An electronic structure-based force field for molecular dynamics simulation of a solvated protein in water
,”
J. Chem. Theory Comput.
5
,
459
467
(
2009
).
120.
W.
Li
,
S.
Li
, and
Y.
Jiang
, “
Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules
,”
J. Phys. Chem. A
111
,
2193
2199
(
2007
).
121.
S.
Hua
,
W.
Li
, and
S.
Li
, “
The generalized energy-based fragmentation approach with an improved fragmentation scheme: Benchmark results and illustrative applications
,”
ChemPhysChem
14
,
108
115
(
2013
).
122.
H.
Wang
and
W.
Yang
, “
Toward building protein force fields by residue-based systematic molecular fragmentation and neural network
,”
J. Chem. Theory Comput.
15
,
1409
1417
(
2019
).
123.
Z.
Wang
,
Y.
Han
,
J.
Li
, and
X.
He
, “
Combining the fragmentation approach and neural network potential energy surfaces of fragments for accurate calculation of protein energy
,”
J. Phys. Chem. B
124
,
3027
3035
(
2020
).
124.
Z.
Cheng
,
J.
Du
,
L.
Zhang
,
J.
Ma
,
W.
Li
, and
S.
Li
, “
Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning
,”
Phys. Chem. Chem. Phys.
24
,
1326
1337
(
2022
).
125.
K.
Liao
,
S.
Dong
,
Z.
Cheng
,
W.
Li
, and
S.
Li
, “
Combined fragment-based machine learning force field with classical force field and its application in the NMR calculations of macromolecules in solutions
,”
Phys. Chem. Chem. Phys.
24
,
18559
18567
(
2022
).
126.
M. A.
Collins
and
V. A.
Deev
, “
Accuracy and efficiency of electronic energies from systematic molecular fragmentation
,”
J. Chem. Phys.
125
,
104104
(
2006
).
127.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions
,”
J. Chem. Phys.
72
,
650
654
(
1980
).
128.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
129.
A. D.
Becke
, “
Density-functional thermochemistry. I. The effect of the exchange-only gradient correction
,”
J. Chem. Phys.
96
,
2155
2160
(
1992
).
130.
A. D.
Becke
and
E. R.
Johnson
, “
A density-functional model of the dispersion interaction
,”
J. Chem. Phys.
123
,
154101
(
2005
).
131.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
132.
J. S.
Smith
,
B.
Nebgen
,
N.
Lubbers
,
O.
Isayev
, and
A. E.
Roitberg
, “
Less is more: Sampling chemical space with active learning
,”
J. Chem. Phys.
148
,
241733
(
2018
).
133.
J. S.
Smith
,
B. T.
Nebgen
,
R.
Zubatyuk
,
N.
Lubbers
,
C.
Devereux
,
K.
Barros
,
S.
Tretiak
,
O.
Isayev
, and
A. E.
Roitberg
, “
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
,”
Nat. Commun.
10
,
2903
(
2019
).
134.
X.
Hu
,
M.-O.
Lenz-Himmer
, and
C.
Baldauf
, “
Better force fields start with better data: A data set of cation dipeptide interactions
,”
Sci. Data
9
,
327
(
2022
).
135.
J.
Hoja
,
L.
Medrano Sandonas
,
B. G.
Ernst
,
A.
Vazquez-Mayagoitia
,
R. A.
DiStasio
, Jr.
, and
A.
Tkatchenko
, “
QM7-X, a comprehensive dataset of quantum-mechanical properties spanning the chemical space of small organic molecules
,”
Sci. Data
8
,
43
(
2021
).
136.
H.
Grubmüller
,
H.
Heller
,
A.
Windemuth
, and
K.
Schulten
, “
Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions
,”
Mol. Simul.
6
,
121
142
(
1991
).
137.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
138.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
139.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
140.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
141.
P.
Zhang
,
L.
Shen
, and
W.
Yang
, “
Solvation free energy calculations with quantum mechanics/molecular mechanics and machine learning models
,”
J. Phys. Chem. B
123
,
901
908
(
2019
).
142.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Man’e
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Vi’egas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
,
TensorFlow large-scale machine learning on heterogeneous systems, software
, tensorflow.org,
2015
.
143.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
144.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1-2
,
19
25
(
2015
).
145.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16 Revision A.03
,
Gaussian Inc.
,
Wallingford CT
,
2016
.
146.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
147.
J.
Graf
,
P. H.
Nguyen
,
G.
Stock
, and
H.
Schwalbe
, “
Structure and dynamics of the homologous series of alanine peptides: A joint molecular dynamics/NMR study
,”
J. Am. Chem. Soc.
129
,
1179
1189
(
2007
).
148.
V.
Mironov
,
Y.
Alexeev
,
V. K.
Mulligan
, and
D. G.
Fedorov
, “
A systematic study of minima in alanine dipeptide
,”
J. Comput. Chem.
40
,
297
309
(
2019
).
149.
Y.
Yuan
,
M. J. L.
Mills
,
P. L. A.
Popelier
, and
F.
Jensen
, “
Comprehensive analysis of energy minima of the 20 natural amino acids
,”
J. Phys. Chem. A
118
,
7876
7891
(
2014
).
150.
M. K.
Kesharwani
,
A.
Karton
, and
J. M. L.
Martin
, “
Benchmark ab initio conformational energies for the proteinogenic amino acids through explicitly correlated methods. assessment of density functional methods
,”
J. Chem. Theory Comput.
12
,
444
454
(
2016
).
151.
S.
Vijay-Kumar
,
C. E.
Bugg
, and
W. J.
Cook
, “
Structure of ubiquitin refined at 1.8 Å resolution
,”
J. Mol. Biol.
194
,
531
544
(
1987
).
152.
C.
Jelsch
,
M. M.
Teeter
,
V.
Lamzin
,
V.
Pichon-Pesme
,
R. H.
Blessing
, and
C.
Lecomte
, “
Accurate protein crystallography at ultra-high resolution: Valence electron distribution in crambin
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
3171
3176
(
2000
).
153.
T. S.
Ulmer
,
B. E.
Ramirez
,
F.
Delaglio
, and
A.
Bax
, “
Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy
,”
J. Am. Chem. Soc.
125
,
9179
9191
(
2003
).
154.
K.
Harata
, “
X-ray structure of monoclinic Turkey egg lysozyme at 1.3 Å resolution
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
49
,
497
504
(
1993
).
You do not currently have access to this content.