Supported metallic nanoparticles play a central role in catalysis. However, predictive modeling is particularly challenging due to the structural and dynamic complexity of the nanoparticle and its interface with the support, given that the sizes of interest are often well beyond those accessible via traditional ab initio methods. With recent advances in machine learning, it is now feasible to perform MD simulations with potentials retaining near-density-functional theory (DFT) accuracy, which can elucidate the growth and relaxation of supported metal nanoparticles, as well as reactions on those catalysts, at temperatures and time scales approaching those relevant to experiments. Furthermore, the surfaces of the support materials can also be modeled realistically through simulated annealing to include effects such as defects and amorphous structures. We study the adsorption of fluorine atoms on ceria and silica supported palladium nanoparticles using machine learning potential trained by DFT data using the DeePMD framework. We show defects on ceria and Pd/ceria interfaces are crucial for the initial adsorption of fluorine, while the interplay between Pd and ceria and the reverse oxygen migration from ceria to Pd control spillover of fluorine from Pd to ceria at later stages. In contrast, silica supports do not induce fluorine spillover from Pd particles.

1.
W. C.
Conner
and
J. L.
Falconer
, “
Spillover in heterogeneous catalysis
,”
Chem. Rev.
95
,
759
788
(
1995
).
2.
W.
Karim
,
C.
Spreafico
,
A.
Kleibert
,
J.
Gobrecht
,
J.
VandeVondele
,
Y.
Ekinci
, and
J. A.
van Bokhoven
, “
Catalyst support effects on hydrogen spillover
,”
Nature
541
,
68
71
(
2017
).
3.
M.
Xiong
,
Z.
Gao
, and
Y.
Qin
, “
Spillover in heterogeneous catalysis: New insights and opportunities
,”
ACS Catal.
11
,
3159
3172
(
2021
).
4.
G. M.
Psofogiannakis
and
G. E.
Froudakis
, “
DFT study of the hydrogen spillover mechanism on Pt-doped graphite
,”
J. Phys. Chem. C
113
,
14908
14915
(
2009
).
5.
A.
Sihag
,
Z.-L.
Xie
,
H. V.
Thang
,
C.-L.
Kuo
,
F.-G.
Tseng
,
M. S.
Dyer
, and
H.-Y. T.
Chen
, “
DFT insights into comparative hydrogen adsorption and hydrogen spillover mechanisms of Pt4/graphene and Pt4/anatase (101) surfaces
,”
J. Phys. Chem. C
123
,
25618
25627
(
2019
).
6.
J.-H.
Guo
,
J.-X.
Liu
,
H.-B.
Wang
,
H.-Y.
Liu
, and
G.
Chen
, “
Combined DFT and kinetic Monte Carlo study of a bridging-spillover mechanism on fluorine-decorated graphene
,”
Phys. Chem. Chem. Phys.
23
,
2384
2391
(
2021
).
7.
W.
Ji
,
N.
Wang
,
X.
Chen
,
Q.
Li
,
K.
Lin
,
J.
Deng
,
J.
Chen
, and
X.
Xing
, “
Effects of subsurface oxide on Cu1/CeO2 single-atom catalysts for CO oxidation: A theoretical investigation
,”
Inorg. Chem.
61
,
10006
10014
(
2022
).
8.
P. S.
Rice
and
P.
Hu
, “
Understanding supported noble metal catalysts using first-principles calculations
,”
J. Chem. Phys.
151
,
180902
(
2019
).
9.
R.
Ouyang
,
Y.
Xie
, and
D.-E.
Jiang
, “
Global minimization of gold clusters by combining neural network potentials and the basin-hopping method
,”
Nanoscale
7
,
14817
14821
(
2015
).
10.
J.
Timoshenko
,
D.
Lu
,
Y.
Lin
, and
A. I.
Frenkel
, “
Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles
,”
J. Phys. Chem. Lett.
8
,
5091
5098
(
2017
).
11.
M. O. J.
Jäger
,
E. V.
Morooka
,
F.
Federici Canova
,
L.
Himanen
, and
A. S.
Foster
, “
Machine learning hydrogen adsorption on nanoclusters through structural descriptors
,”
npj Comput. Mater.
4
,
37
(
2018
).
12.
N.
Combe
,
P.
Jensen
, and
A.
Pimpinelli
, “
Changing shapes in the nanoworld
,”
Phys. Rev. Lett.
85
,
110
(
2000
).
13.
K. C.
Lai
,
Y.
Han
,
P.
Spurgeon
,
W.
Huang
,
P. A.
Thiel
,
D.-J.
Liu
, and
J. W.
Evans
, “
Reshaping, intermixing, and coarsening for metallic nanocrystals: Nonequilibrium statistical mechanical and coarse-grained modeling
,”
Chem. Rev.
119
,
6670
6768
(
2019
).
14.
K. C.
Lai
,
D.-J.
Liu
, and
J. W.
Evans
, “
Nucleation-mediated reshaping of facetted metallic nanocrystals: Breakdown of the classical free energy picture
,”
J. Chem. Phys.
158
,
104102
(
2023
).
15.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
16.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
17.
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
, “
Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
,”
J. Comput. Phys.
285
,
316
330
(
2015
).
18.
A. V.
Shapeev
, “
Moment tensor potentials: A class of systematically improvable interatomic potentials
,”
Multiscale Model. Simul.
14
,
1153
1173
(
2016
).
19.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
(
2018
).
20.
D.-J.
Liu
and
J. W.
Evans
, “
Reaction processes at step edges on S-decorated Cu(111) and Ag(111) surfaces: MD analysis utilizing machine learning derived potentials
,”
J. Chem. Phys.
156
,
204106
(
2022
).
21.
P. J.
Naik
,
P.
Kunal
,
D.-J.
Liu
,
J. W.
Evans
, and
I. I.
Slowing
, “
Efficient transfer hydrodehalogenation of halophenols catalyzed by Pd supported on ceria
,”
Appl. Catal., A
650
,
119007
(
2023
).
22.
See https://www.vasp.at/for general information of VASP.
23.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
);
[PubMed]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, Erratum
Phys. Rev. Lett.
78
,
1396
(
1997
).
24.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
25.
A.
Hjorth Larsen
,
J.
Jørgen Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
et al, “
The atomic simulation environment—A Python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
26.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
27.
M.
Nolan
,
S.
Grigoleit
,
D. C.
Sayle
,
S. C.
Parker
, and
G. W.
Watson
, “
Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria
,”
Surf. Sci.
576
,
217
229
(
2005
).
28.
A.
Trovarelli
and
J.
Llorca
, “
Ceria catalysts at nanoscale: How do crystal shapes shape catalysis?
,”
ACS Catal.
7
,
4716
4735
(
2017
).
29.
R.
Lawler
,
J.
Cho
,
H. C.
Ham
,
H.
Ju
,
S. W.
Lee
,
J. Y.
Kim
,
J.
Il Choi
, and
S. S.
Jang
, “
CeO2(111) surface with oxygen vacancy for radical scavenging: A density functional theory approach
,”
J. Phys. Chem. C
124
,
20950
20959
(
2020
).
30.
D. A.
Siegel
,
W. C.
Chueh
,
F.
El Gabaly
,
K. F.
McCarty
,
J.
de la Figuera
, and
M.
Blanco-Rey
, “
Determination of the surface structure of CeO2(111) by low-energy electron diffraction
,”
J. Chem. Phys.
139
,
114703
(
2013
).
31.
N. T.
Huff
,
E.
Demiralp
,
T.
Çagin
, and
W. A.
Goddard
III
, “
Factors affecting molecular dynamics simulated vitreous silica structures
,”
J. Non-Cryst. Solids
253
,
133
142
(
1999
).
32.
L. C.
Erhard
,
J.
Rohrer
,
K.
Albe
, and
V. L.
Deringer
, “
A machine-learned interatomic potential for silica and its relation to empirical models
,”
npj Comput. Mater.
8
,
90
(
2022
).
33.
Y.
Lykhach
,
J.
Kubát
,
A.
Neitzel
,
N.
Tsud
,
M.
Vorokhta
,
T.
Skála
,
F.
Dvořák
,
Y.
Kosto
,
K. C.
Prince
,
V.
Matolín
,
V.
Johánek
,
J.
Mysliveček
, and
J.
Libuda
, “
Charge transfer and spillover phenomena in ceria-supported iridium catalysts: A model study
,”
J. Chem. Phys.
151
,
204703
(
2019
).

Supplementary Material

You do not currently have access to this content.