Control over the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures is crucial for their practical applications in current semiconducting devices. However, the oxide surface structures inducing 2DEG are still ambiguous because oxide-stoichiometry (OS) matching structures possess occupied surface donor states at 1.0–1.8 eV below the conduction band minimum of bulk but are usually not available in energy than electron counting (EC) rule structures. In this work, a global optimization algorithm was introduced to explore the possible oxidation structures on GaN (0001) and AlN (0001) surfaces; the method was demonstrated to be available due to the fact that the reported oxidized structures were reproduced at each stoichiometry. Interestingly, the two similar oxide structures with close energy were found in each oxide-bilayer, which can be used to clarify the experimental observations of disordered surface oxide layers below 550 °C. Additionally, new stable oxidation structures with low surface energy were proposed. Interestingly, the new OS matching structures are proposed with remarkably lower energy than EC rule structures under cation-rich and oxygen-poor conditions, which is caused by the large formation enthalpy of Al2O3 and Ga2O3. Further electronic structure calculations demonstrate that the new OS structures possess highest occupied states above the half of the gap and are the origin of 2DEG in AlGaN/GaN heterostructures.

1.
U. K.
Mishra
,
P.
Parikh
, and
W.
Yi-Feng
, “
AlGaN/GaN HEMTs-an overview of device operation and applications
,”
Proc. IEEE
90
(
6
),
1022
1031
(
2002
).
2.
S.
Rajan
,
P.
Waltereit
,
C.
Poblenz
,
S. J.
Heikman
,
D. S.
Green
,
J. S.
Speck
, and
U. K.
Mishra
, “
Power performance of AlGaN–GaN HEMTs grown on SiC by plasma-assisted MBE
,”
IEEE Electron Device Lett.
25
(
5
),
247
249
(
2004
).
3.
B.
Liu
,
W.
Yang
,
J.
Li
,
X.
Zhang
,
P.
Niu
, and
X.
Jiang
, “
Template approach to crystalline GaN nanosheets
,”
Nano Lett.
17
(
5
),
3195
3201
(
2017
).
4.
H.
Amano
,
Y.
Baines
,
E.
Beam
,
M.
Borga
,
T.
Bouchet
,
P. R.
Chalker
,
M.
Charles
,
K. J.
Chen
,
N.
Chowdhury
,
R. M.
Chu
,
C.
De Santi
,
M. M.
De Souza
,
S.
Decoutere
,
L.
Di Cioccio
,
B.
Eckardt
,
T.
Egawa
,
P.
Fay
,
J. J.
Freedsman
,
L.
Guido
,
O.
Haberlen
,
G.
Haynes
,
T.
Heckel
,
D.
Hemakumara
,
P.
Houston
,
J.
Hu
,
M. Y.
Hua
,
Q. Y.
Huang
,
A.
Huang
,
S.
Jiang
,
H.
Kawai
,
D.
Kinzer
,
M.
Kuball
,
A.
Kumar
,
K. B.
Lee
,
X.
Li
,
D.
Marcon
,
M.
Marz
,
R.
McCarthy
,
G.
Meneghesso
,
M.
Meneghini
,
E.
Morvan
,
A.
Nakajima
,
E. M. S.
Narayanan
,
S.
Oliver
,
T.
Palacios
,
D.
Piedra
,
M.
Plissonnier
,
R.
Reddy
,
M.
Sun
,
I.
Thayne
,
A.
Torres
,
N.
Trivellin
,
V.
Unni
,
M. J.
Uren
,
M.
Van Hove
,
D. J.
Wallis
,
J.
Wang
,
J.
Xie
,
S.
Yagi
,
S.
Yang
,
C.
Youtsey
,
R. Y.
Yu
,
E.
Zanoni
,
S.
Zeltner
, and
Y. H.
Zhang
, “
The 2018 GaN power electronics roadmap
,”
J. Phys. D: Appl. Phys.
51
(
16
),
163001
(
2018
).
5.
L.
Gordon
,
M. S.
Miao
,
S.
Chowdhury
,
M.
Higashiwaki
,
U. K.
Mishra
, and
C. G.
Van de Walle
, “
Distributed surface donor states and the two-dimensional electron gas at AlGaN/GaN heterojunctions
,”
J. Phys. D: Appl. Phys.
43
(
50
),
505501
(
2010
).
6.
I. P.
Smorchkova
,
C. R.
Elsass
,
J. P.
Ibbetson
,
R.
Vetury
,
B.
Heying
,
P.
Fini
,
E.
Haus
,
S. P.
DenBaars
,
J. S.
Speck
, and
U. K.
Mishra
, “
Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy
,”
J. Appl. Phys.
86
(
8
),
4520
(
1999
).
7.
J. P.
Ibbetson
,
P. T.
Fini
,
K. D.
Ness
,
S. P.
DenBaars
,
J. S.
Speck
, and
U. K.
Mishra
, “
Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors
,”
Appl. Phys. Lett.
77
(
2
),
250
(
2000
).
8.
I. P.
Smorchkova
,
L.
Chen
,
T.
Mates
,
L.
Shen
,
S.
Heikman
,
B.
Moran
,
S.
Keller
,
S. P.
DenBaars
,
J. S.
Speck
, and
U. K.
Mishra
, “
AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy
,”
J. Appl. Phys.
90
(
10
),
5196
5201
(
2001
).
9.
Z.
Fang
,
E.
Wang
,
Y.
Chen
,
X.
Hou
,
K. C.
Chou
,
W.
Yang
,
J.
Chen
, and
M.
Shang
, “
Wurtzite AlN(0001) surface oxidation: Hints from ab initio calculations
,”
ACS Appl. Mater. Interfaces
10
(
36
),
30811
30818
(
2018
).
10.
S.
Washiyama
,
Y.
Guan
,
S.
Mita
,
R.
Collazo
, and
Z.
Sitar
, “
Two-dimensional electron gas at the AlGaN/GaN interface: Layer thickness dependence
,”
J. Appl. Phys.
127
(
11
),
115301
(
2020
).
11.
K. J.
Mirrielees
,
J. H.
Dycus
,
J. N.
Baker
,
P.
Reddy
,
R.
Collazo
,
Z.
Sitar
,
J. M.
LeBeau
, and
D. L.
Irving
, “
Native oxide reconstructions on AlN and GaN (0001) surfaces
,”
J. Appl. Phys.
129
(
19
),
195304
(
2021
).
12.
S.
Sharbati
,
I.
Gharibshahian
,
T.
Ebel
,
A. A.
Orouji
, and
W. T.
Franke
, “
Analytical model for two-dimensional electron gas charge density in recessed-gate GaN high-electron-mobility transistors
,”
J. Electron. Mater.
50
(
7
),
3923
3929
(
2021
).
13.
M. D.
Pashley
, “
Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001)
,”
Phys. Rev. B
40
(
15
),
10481
10487
(
1989
).
14.
L.
Zhang
,
E.
Wang
,
Q.
Xue
,
S.
Zhang
, and
Z.
Zhang
, “
Generalized electron counting in determination of metal-induced reconstruction of compound semiconductor surfaces
,”
Phys. Rev. Lett.
97
(
12
),
126103
(
2006
).
15.
H.
Ye
,
G.
Chen
,
Y.
Zhu
, and
S. H.
Wei
, “
Asymmetry of adsorption of oxygen at Wurtzite AlN (0001) and (0001̄) surfaces: First-principles calculations
,”
Phys. Rev. B
77
(
3
),
033302
(
2008
).
16.
J. H.
Dycus
,
K. J.
Mirrielees
,
E. D.
Grimley
,
R.
Kirste
,
S.
Mita
,
Z.
Sitar
,
R.
Collazo
,
D. L.
Irving
, and
J. M.
LeBeau
, “
Structure of ultrathin native oxides on III-nitride surfaces
,”
ACS Appl. Mater. Interfaces
10
(
13
),
10607
10611
(
2018
).
17.
T.
Auzelle
,
F.
Ullrich
,
S.
Hietzschold
,
S.
Brackmann
,
S.
Hillebrandt
,
W.
Kowalsky
,
E.
Mankel
,
R.
Lovrincic
, and
S.
Fernandez-Garrido
, “
Electronic properties of air-exposed GaN(11-00) and (0001) surfaces after several device processing compatible cleaning steps(1̄00) and (0001) surfaces after several device processing compatible cleaning steps
,”
Appl. Surf. Sci.
495
,
143514
(
2019
).
18.
P.
Laukkanen
,
M. P. J.
Punkkinen
,
M.
Kuzmin
,
K.
Kokko
,
J.
Lång
, and
R. M.
Wallace
, “
Passivation of III–V surfaces with crystalline oxidation
,”
Appl. Phys. Rev.
8
(
1
),
011309
(
2021
).
19.
M.
Sumiya
,
M.
Sumita
,
Y.
Asai
,
R.
Tamura
,
A.
Uedono
, and
A.
Yoshigoe
, “
Dynamic observation and theoretical analysis of initial O2 molecule adsorption on polar and m-plane surfaces of GaN
,”
J. Phys. Chem. C
124
(
46
),
25282
25290
(
2020
).
20.
Ł.
Janicki
,
R.
Korbutowicz
,
M.
Rudziński
,
P. P.
Michałowski
,
S.
Złotnik
,
M.
Grodzicki
,
S.
Gorantla
,
J.
Serafińczuk
,
D.
Hommel
, and
R.
Kudrawiec
, “
Thermal oxidation of [0001] GaN in water vapor compared with dry and wet oxidation: Oxide properties and impact on GaN
,”
Appl. Surf. Sci.
598
,
153872
(
2022
).
21.
Y.
Dong
,
R. M.
Feenstra
, and
J. E.
Northrup
, “
Electronic states of oxidized GaN(0001) surfaces
,”
Appl. Phys. Lett.
89
(
17
),
171920
(
2006
).
22.
M.
Grodzicki
,
P.
Mazur
,
S.
Zuber
,
J.
Brona
, and
A.
Ciszewski
, “
Oxidation of GaN(0001) by low-energy ion bombardment
,”
Appl. Surf. Sci.
304
,
20
23
(
2014
).
23.
T.
Yamada
,
J.
Ito
,
R.
Asahara
,
K.
Watanabe
,
M.
Nozaki
,
T.
Hosoi
,
T.
Shimura
, and
H.
Watanabe
, “
Improved interface properties of GaN-based metal-oxide-semiconductor devices with thin Ga-oxide interlayers
,”
Appl. Phys. Lett.
110
(
26
),
261603
(
2017
).
24.
T.
Yamada
,
J.
Ito
,
R.
Asahara
,
K.
Watanabe
,
M.
Nozaki
,
S.
Nakazawa
,
Y.
Anda
,
M.
Ishida
,
T.
Ueda
,
A.
Yoshigoe
,
T.
Hosoi
,
T.
Shimura
, and
H.
Watanabe
, “
Comprehensive study on initial thermal oxidation of GaN(0001) surface and subsequent oxide growth in dry oxygen ambient
,”
J. Appl. Phys.
121
(
3
),
035303
(
2017
).
25.
C.-T.
Yeh
and
W.-H.
Tuan
, “
Oxidation mechanism of aluminum nitride revisited
,”
J. Adv. Ceram.
6
(
1
),
27
32
(
2017
).
26.
N.
Stolyarchuk
,
T.
Markurt
,
A.
Courville
,
K.
March
,
J.
Zuniga-Perez
,
P.
Vennegues
, and
M.
Albrecht
, “
Intentional polarity conversion of AlN epitaxial layers by oxygen
,”
Sci. Rep.
8
(
1
),
14111
(
2018
).
27.
A.
Henning
,
J. D.
Bartl
,
A.
Zeidler
,
S.
Qian
,
O.
Bienek
,
C. M.
Jiang
,
C.
Paulus
,
B.
Rieger
,
M.
Stutzmann
, and
I. D.
Sharp
, “
Aluminum oxide at the monolayer limit via oxidant-free plasma-assisted atomic layer deposition on GaN
,”
Adv. Funct. Mater.
31
(
33
),
2101441
(
2021
).
28.
X. Y.
Qin
,
H.
Dong
,
J.
Kim
, and
R. M.
Wallace
, “
A crystalline oxide passivation for Al2O3/AlGaN/GaN
,”
Appl. Phys. Lett.
105
(
14
),
141604
(
2014
).
29.
M. S.
Miao
,
J. R.
Weber
, and
C. G.
Van de Walle
, “
Oxidation and the origin of the two-dimensional electron gas in AlGaN/GaN heterostructures
,”
J. Appl. Phys.
107
(
12
),
123713
(
2010
).
30.
J.
Northrup
, “
Oxygen-rich GaN(101̄0) surfaces: First-principles total energy calculations
,”
Phys. Rev. B
73
(
11
),
115304
(
2006
).
31.
M. S.
Miao
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Reconstructions and origin of surface states on AlN polar and nonpolar surfaces
,”
Phys. Rev. B
80
(
15
),
155319
(
2009
).
32.
Y.
Dong
,
R. M.
Feenstra
, and
J. E.
Northrup
, “
Oxidized GaN(0001) surfaces studied by scanning tunneling microscopy and spectroscopy and by first-principles theory
,”
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom.
24
(
4
),
2080
2086
(
2006
).
33.
S.
Lu
,
Y.
Wang
,
H.
Liu
,
M. S.
Miao
, and
Y.
Ma
, “
Self-assembled ultrathin nanotubes on diamond (100) surface
,”
Nat. Commun.
5
,
3666
(
2014
).
34.
Y. C.
Wang
,
J. A.
Lv
,
L.
Zhu
, and
Y. M.
Ma
, “
Crystal structure prediction via particle-swarm optimization
,”
Phys. Rev. B
82
(
9
),
094116
(
2010
).
35.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
CALYPSO: A method for crystal structure prediction
,”
Comput. Phys. Commun.
183
(
10
),
2063
2070
(
2012
).
36.
H.
Wang
,
Y.
Wang
,
J.
Lv
,
Q.
Li
,
L.
Zhang
, and
Y.
Ma
, “
CALYPSO structure prediction method and its wide application
,”
Comput. Mater. Sci.
112
,
406
415
(
2016
).
37.
M.
Xu
,
S.
Shao
,
B.
Gao
,
J.
Lv
,
Q.
Li
,
Y.
Wang
,
H.
Wang
,
L.
Zhang
, and
Y.
Ma
, “
Anatase (101)-like structural model revealed for metastable rutile TiO2(011) surface
,”
ACS Appl. Mater. Interfaces
9
(
9
),
7891
7896
(
2017
).
38.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
(
20
),
14251
14269
(
1994
).
39.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
40.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
41.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
42.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
43.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
(
3
),
1758
1775
(
1999
).
44.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
(
12
),
5188
5192
(
1976
).
45.
W. C.
Yi
,
G.
Tang
,
X.
Chen
,
B. C.
Yang
, and
X. B.
Liu
, “
qvasp: A flexible toolkit for VASP users in materials simulations
,”
Comput. Phys. Commun.
257
,
107535
(
2020
).
46.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
(
18
),
8207
(
2003
).
47.
J.
Heyd
and
G. E.
Scuseria
, “
Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional
,”
J. Chem. Phys.
121
(
3
),
1187
1192
(
2004
).
48.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]
,”
J. Chem. Phys.
124
(
21
),
219906
(
2006
).
49.
Y.-S.
Kim
,
K.
Hummer
, and
G.
Kresse
, “
Accurate band structures and effective masses for InP, InAs, and InSb using hybrid functionals
,”
Phys. Rev. B
80
(
3
),
035203
(
2009
).
50.
L.
Xu
,
H.
Zheng
,
B.
Xu
,
G.
Liu
,
S.
Zhang
, and
H.
Zeng
, “
Suppressing nonradiative recombination by electron-donating substituents in 2D conjugated triphenylamine polymers toward efficient perovskite optoelectronics
,”
Nano Lett.
23
(
5
),
1954
1960
(
2023
).
51.
R.
Dingle
,
D. D.
Sell
,
S. E.
Stokowski
, and
M.
Ilegems
, “
Absorption, reflectance, and luminescence of GaN epitaxial layers
,”
Phys. Rev. B
4
(
4
),
1211
1218
(
1971
).
52.
M.
Ilegems
,
R.
Dingle
, and
R. A.
Logan
, “
Luminescence of Zn- and Cd-doped GaN
,”
J. Appl. Phys.
43
(
9
),
3797
3800
(
1972
).
53.
J.
Li
,
K. B.
Nam
,
M. L.
Nakarmi
,
J. Y.
Lin
,
H. X.
Jiang
,
P.
Carrier
, and
S.-H.
Wei
, “
Band structure and fundamental optical transitions in Wurtzite AlN
,”
Appl. Phys. Lett.
83
(
25
),
5163
5165
(
2003
).
54.
D.
Brunner
,
H.
Angerer
,
E.
Bustarret
,
F.
Freudenberg
,
R.
Höpler
,
R.
Dimitrov
,
O.
Ambacher
, and
M.
Stutzmann
, “
Optical constants of epitaxial AlGaN films and their temperature dependence
,”
J. Appl. Phys.
82
(
10
),
5090
(
1997
).
55.
P.
Rinke
,
M.
Winkelnkemper
,
A.
Qteish
,
D.
Bimberg
,
J.
Neugebauer
, and
M.
Scheffler
, “
Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN
,”
Phys. Rev. B
77
(
7
),
075202
(
2008
).
56.
C. G.
Van de Walle
, “
First-principles calculations for defects and impurities: Applications to III-nitrides
,”
J. Appl. Phys.
95
(
8
),
3851
(
2004
).
57.
G.
Koley
and
M. G.
Spencer
, “
On the origin of the two-dimensional electron gas at the AlGaN∕GaN heterostructure interface
,”
Appl. Phys. Lett.
86
(
4
),
042107
(
2005
).

Supplementary Material

You do not currently have access to this content.