The ability to synthetically tune the ligand frameworks of redox-active molecules is of critical importance to the economy of solar fuels because manipulating their redox properties can afford control over the operating potentials of sustained electrocatalytic or photoelectrocatalytic processes. The electronic and steric properties of 2,2′:6′,2″-terpyridine (Terpy) ligand frameworks can be tuned by functional group substitution on ligand backbones, and these correlate strongly to their Hammett parameters. The synthesis of a new series of tridentate meridional ligands of 2,4,6-trisubstituted pyridines that engineers the ability to finely tune the redox potentials of cobalt complexes to more positive potentials than that of their Terpy analogs is achieved by aryl-functionalizing at the four-position and by including isoquinoline at the two- and six-positions of pyridine (Aryl-DiQ). Their cobalt complex syntheses, their electronic properties, and their catalytic activity for carbon dioxide (CO2) reduction are reported and compared to their Terpy analogs. The cobalt derivatives generally experience a positive shift in their redox features relative to the Terpy-based analogs, covering a complementary potential range. Although those evaluated fail to produce any quantifiable products for the reduction of CO2 and suffer from long-term instability, these results suggest possible alternate strategies for stabilizing these compounds during catalysis. We speculate that lower equilibrium association constants to the cobalt center are intrinsic to these ligands, which originate from a steric interaction between protons on the pyridine and isoquinoline moieties. Nevertheless, the new Aryl-DiQ ligand framework has been engineered to selectively tune homoleptic cobalt complexes’ redox potentials.

1.
A.
Paul
,
M. D.
Smith
, and
A. K.
Vannucci
,
J. Org. Chem.
82
,
1996
(
2017
).
2.
P. J.
Ayare
,
S. A.
Gregory
,
R. J.
Key
,
A. E.
Short
,
J. G.
Tillou
,
J. D.
Sitter
,
T.
Yom
,
D. W.
Goodlett
,
D.-C.
Lee
,
F. M.
Alamgir
,
M. D.
Losego
, and
A. K.
Vannucci
,
Green Chem.
23
,
9523
(
2021
).
3.
J. A.
Ramos Sende
,
C. R.
Arana
,
L.
Hernandez
,
K. T.
Potts
,
M.
Keshevarz-K
, and
H. D.
Abruña
,
Inorg. Chem.
34
,
3339
(
1995
).
4.
H. C.
Hurrell
,
A. L.
Mogstad
,
D. A.
Usifer
,
K. T.
Potts
, and
H. D.
Abruña
,
Inorg. Chem.
28
,
1080
(
1989
).
5.
A. R.
Guadalupe
,
D. A.
Usifer
,
K. T.
Potts
,
H. C.
Hurrell
,
A. E.
Mogstad
, and
H. D.
Abruña
,
J. Am. Chem. Soc.
110
,
3462
(
1988
).
6.
K.
Takada
,
G. D.
Storrier
,
F.
Pariente
, and
H. D.
Abruña
,
J. Phys. Chem. B
102
,
1387
(
1998
).
7.
N.
Elgrishi
,
M. B.
Chambers
, and
M.
Fontecave
,
Chem. Sci.
6
,
2522
(
2015
).
8.
N.
Elgrishi
,
M. B.
Chambers
,
V.
Artero
, and
M.
Fontecave
,
Phys. Chem. Chem. Phys.
16
,
13635
(
2014
).
9.
M. L.
Pegis
,
C. F.
Wise
,
D. J.
Martin
, and
J. M.
Mayer
,
Chem. Rev.
118
,
2340
(
2018
).
10.
A.
Winter
and
U. S.
Schubert
,
ChemCatChem
12
,
2890
(
2020
).
11.
N.
Elgrishi
,
M. B.
Chambers
,
X.
Wang
, and
M.
Fontecave
,
Chem. Soc. Rev.
46
,
761
(
2017
).
12.
K.
Chair
,
C. A.
Luna Caceres
,
S.
Rajak
,
O.
Schott
,
G. E.
Ramírez-Caballero
,
T.
Maris
,
G. S.
Hanan
, and
A.
Duong
,
ACS Appl. Energy Mater.
5
,
11077
(
2022
).
13.
J. P. F.
Rebolledo-Chávez
,
G. T.
Toral
,
V.
Ramírez-Delgado
,
Y.
Reyes-Vidal
,
M. L.
Jiménez-González
,
M.
Cruz-Ramírez
,
A.
Mendoza
, and
L.
Ortiz-Frade
,
Catalysts
11
,
948
(
2021
).
14.
J. P.
Sauvage
,
J. P.
Collin
,
J. C.
Chambron
,
S.
Guillerez
,
C.
Coudret
,
V.
Balzani
,
F.
Barigelletti
,
L.
De Cola
, and
L.
Flamigni
,
Chem. Rev.
94
,
993
(
1994
).
15.
D. G.
Brown
,
N.
Sanguantrakun
,
B.
Schulze
,
U. S.
Schubert
, and
C. P.
Berlinguette
,
J. Am. Chem. Soc.
134
,
12354
(
2012
).
16.
S. G.
Shepard
,
S. M.
Fatur
,
A. K.
Rappé
, and
N. H.
Damrauer
,
J. Am. Chem. Soc.
138
,
2949
(
2016
).
17.
R.
Büchner
,
C. T.
Cunningham
,
J. S.
Field
,
R. J.
Haines
,
D. R.
McMillin
, and
G. C.
Summerton
,
J. Chem. Soc., Dalton Trans.
711
,
711
(
1999
).
18.
I. N.
Mills
,
J. A.
Porras
, and
S.
Bernhard
,
Acc. Chem. Res.
51
,
352
(
2018
).
19.
H.
Hofmeier
and
U. S.
Schubert
,
Chem. Soc. Rev.
33
,
373
(
2004
).
20.
C. E.
Housecroft
and
E. C.
Constable
,
Chem. Commun.
56
,
10786
(
2020
).
21.
C.
Wei
,
Y.
He
,
X.
Shi
, and
Z.
Song
,
Coord. Chem. Rev.
385
,
1
(
2019
).
22.
A. K.-W.
Chan
and
V. W.-W.
Yam
,
Acc. Chem. Res.
51
,
3041
(
2018
).
23.
N.
Kaeffer
and
W.
Leitner
,
JACS Au
2
,
1266
(
2022
).
24.
B. M.
Stratakes
,
J. L.
Dempsey
, and
A. J. M.
Miller
,
ChemElectroChem
8
,
4161
(
2021
).
25.
J.
Chambers
,
B.
Eaves
,
D.
Parker
,
R.
Claxton
,
P. S.
Ray
, and
S. J.
Slattery
,
Inorg. Chim. Acta
359
,
2400
(
2006
).
26.
M.
Sjödin
,
J.
Gätjens
,
L. C.
Tabares
,
P.
Thuéry
,
V. L.
Pecoraro
, and
S.
Un
,
Inorg. Chem.
47
,
2897
(
2008
).
27.
J. C.
Dickenson
,
M. E.
Haley
,
J. T.
Hyde
,
Z. M.
Reid
,
T. J.
Tarring
,
D. A.
Iovan
, and
D. P.
Harrison
,
Inorg. Chem.
60
,
9956
(
2021
).
28.
S.
Aroua
,
T. K.
Todorova
,
P.
Hommes
,
L.-M.
Chamoreau
,
H.-U.
Reissig
,
V.
Mougel
, and
M.
Fontecave
,
Inorg. Chem.
56
,
5930
(
2017
).
29.
J. D.
Galloway
,
D. N.
Mai
, and
R. D.
Baxter
,
Org. Lett.
19
,
5772
(
2017
).
30.
H.
Jiang
,
J.
Xie
,
A.
Lin
,
Y.
Cheng
, and
C.
Zhu
,
RSC Adv.
2
,
10496
(
2012
).
31.
K.-L.
Wu
,
W.-P.
Ku
,
J. N.
Clifford
,
E.
Palomares
,
S.-T.
Ho
,
Y.
Chi
,
S.-H.
Liu
,
P.-T.
Chou
,
M. K.
Nazeeruddin
, and
M.
Grätzel
,
Energy Environ. Sci.
6
,
859
(
2013
).
32.
A.
Anthonysamy
,
S.
Balasubramanian
,
K.
Chinnakali
, and
H.-K.
Fun
,
Acta Crystallogr., Sect. E: Struct. Rep. Online
63
,
o1148
(
2007
).
33.
F.
Emmerling
,
J.
Bricks
,
U.
Resch-Genger
,
W.
Kraus
,
B.
Schulz
,
Y.
Li
, and
G.
Reck
,
J. Mol. Struct.
874
,
14
(
2008
).
34.
E. C.
Constable
,
K.
Harris
,
C. E.
Housecroft
,
M.
Neuburger
, and
J. A.
Zampese
,
CrystEngComm
12
,
2949
(
2010
).
35.
H.
Elsbernd
and
J. K.
Beattie
,
J. Inorg. Nucl. Chem.
34
,
771
(
1972
).
36.
W.-W.
Fu
,
X.
Shu
,
Y.-L.
Luo
,
Z.-Q.
Tang
,
Q.
Li
,
H.-J.
Liu
,
Q.-W.
Cheng
,
H.-Y.
Wang
, and
Y.
Liu
,
J. Struct. Chem.
59
,
398
(
2018
).
37.
C.
Hansch
,
A.
Leo
, and
R. W.
Taft
,
Chem. Rev.
91
,
165
(
1991
).
38.
P.
Zanello
,
C.
Nervi
, and
F.
Fabrizi de Biani
,
Inorganic Electrochemistry Theory, Practice and Application
(
The Royal Society of Chemistry
,
2011
).
39.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
, 2nd ed. (
Wiley
,
2000
).
40.
V. A.
Adamian
,
F.
D’Souza
,
S.
Licoccia
,
M. L.
Di Vona
,
E.
Tassoni
,
R.
Paolesse
,
T.
Boschi
, and
K. M.
Kadish
,
Inorg. Chem.
34
,
532
(
1995
).
41.
N.
Chapman
,
Advances in Linear Free Energy Relationships
, edited by
J.
Shorter
(
Plenum Publishing Company Ltd.
,
London, New York
,
1972
), ISBN: 978-1-4615-8660-9
42.
S. E.
Neale
,
D. A.
Pantazis
, and
S. A.
Macgregor
,
Dalton Trans.
49
,
6478
(
2020
).
44.
C.
Costentin
,
S.
Drouet
,
M.
Robert
, and
J.-M.
Savéant
,
J. Am. Chem. Soc.
134
,
11235
(
2012
).
45.
E. S.
Rountree
,
B. D.
McCarthy
,
T. T.
Eisenhart
, and
J. L.
Dempsey
,
Inorg. Chem.
53
,
9983
(
2014
).
46.
E. C.
Constable
,
C. E.
Housecroft
,
T.
Kulke
,
C.
Lazzarini
,
E. R.
Schofield
, and
Y.
Zimmermann
,
J. Chem. Soc., Dalton Trans.
2001
,
2864
.
47.
G. R.
Fulmer
,
A. J. M.
Miller
,
N. H.
Sherden
,
H. E.
Gottlieb
,
A.
Nudelman
,
B. M.
Stoltz
,
J. E.
Bercaw
, and
K. I.
Goldberg
,
Organometallics
29
,
2176
(
2010
).
48.
S. L.
Hooe
,
J. M.
Dressel
,
D. A.
Dickie
, and
C. W.
Machan
,
ACS Catal.
10
,
1146
(
2020
).
49.
O. V.
Dolomanov
,
L. J.
Bourhis
,
R. J.
Gildea
,
J. A. K.
Howard
, and
H.
Puschmann
,
J. Appl. Crystallogr.
42
,
339
(
2009
).
50.
G. M.
Sheldrick
,
Acta Crystallogr., Sect. C: Struct. Chem.
71
,
3
(
2015
).
51.
G. M.
Sheldrick
,
Acta Crystallogr., Sect. A: Struct. Chem.
71
,
3
(
2015
).
52.
L. J.
Farrugia
,
J. Appl. Crystallogr.
45
,
849
(
2012
).
53.
54.
F.
Neese
,
WIREs Comput. Mol. Sci.
2
,
73
(
2012
).
55.
F.
Neese
,
WIREs Comput. Mol. Sci.
8
,
e1327
(
2018
).
56.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
57.
L.
Castro
and
M.
Bühl
,
J. Chem. Theory Comput.
10
,
243
(
2014
).
58.
E. F.
Pettersen
,
T. D.
Goddard
,
C. C.
Huang
,
G. S.
Couch
,
D. M.
Greenblatt
,
E. C.
Meng
, and
T. E.
Ferrin
,
J. Comput. Chem.
25
,
1605
(
2004
).
59.
K.
Matcha
and
A. P.
Antonchick
,
Angew. Chem., Int. Ed.
52
,
2082
(
2013
).

Supplementary Material

You do not currently have access to this content.