Many modern anti-icing and anti-fouling coatings rely on soft, low surface energy elastomeric materials such as polydimethylsiloxane for their functionality. While the low surface energy is desirable for reducing adhesion, very little work considers the larger contribution to adhesive failure caused by the viscoelastic nature of elastomers. Here we examine several different siloxane elastomers using a JKR adhesion test, which was operated over a range of different speeds and temperatures. Additionally, we characterize the dynamic mechanical modulus over a large range of frequencies for each material. We note that surface energies of the materials are all similar, but variation in adhesion strength is clear in the data. The variation at low speeds is related to elastomer architecture but the speed dependence itself is independent of architecture. Qualitative correlations are noted between the JKR adhesion measurements and the dynamic moduli. Finally, an attempt is made to directly compare moduli and adhesion through the recent Persson–Brener model. Approximations of the model are shown to be inaccurate. The full model is found to be accurate at low speeds, although it fails to precisely capture higher speed behaviour.

1.
K.
Golovin
,
S. P. R.
Kobaku
,
D. H.
Lee
,
E. T.
DiLoreto
,
J. M.
Mabry
, and
A.
Tuteja
, “
Designing durable icephobic surfaces
,”
Sci. Adv.
2
,
e1501496
(
2016
).
2.
V.
Upadhyay
,
T.
Galhenage
,
D.
Battocchi
, and
D.
Webster
, “
Amphiphilic icephobic coatings
,”
Prog. Org. Coat.
112
,
191
199
(
2017
).
3.
J.
Liu
,
J.
Wang
,
L.
Mazzola
,
H.
Memon
,
T.
Barman
,
B.
Turnbull
,
G.
Mingione
,
K.-S.
Choi
, and
X.
Hou
, “
Development and evaluation of poly(dimethylsiloxane) based composite coatings for icephobic applications
,”
Surf. Coat. Technol.
349
,
980
985
(
2018
).
4.
K.
Golovin
,
A.
Dhyani
,
M. D.
Thouless
, and
A.
Tuteja
, “
Low–interfacial toughness materials for effective large-scale deicing
,”
Science
364
,
371
375
(
2019
).
5.
A.
Dhyani
,
J.
Wang
,
A. K.
Halvey
,
B.
Macdonald
,
G.
Mehta
, and
A.
Tuteja
, “
Design and applications of surfaces that control the accretion of matter
,”
Science
373
,
eaba5010
(
2021
).
6.
Y.
Liu
,
Y.
Shao
,
Y.
Wang
, and
J.
Wang
, “
An abrasion-resistant, photothermal, superhydrophobic anti-icing coating prepared by polysiloxane-modified carbon nanotubes and fluorine-silicone resin
,”
Colloids Surf., A
648
,
129335
(
2022
).
7.
J.
Benda
,
H.
Narikiyo
,
S. J.
Stafslien
,
L. J.
VanderWal
,
J. A.
Finlay
,
N.
Aldred
,
A. S.
Clare
, and
D. C.
Webster
, “
Studying the effect of pre-polymer composition and incorporation of surface-modifying amphiphilic additives on the fouling-release performance of amphiphilic siloxane-polyurethane coatings
,”
ACS Appl. Mater. Interfaces
14
,
37229
37247
(
2022
).
8.
D. A.
Bellido-Aguilar
,
M.
Safaripour
,
K.
VanDonselaar
,
L.-S. C.
Ndunagum
,
D. C.
Webster
, and
A. B.
Croll
, “
Comprehensive measurement of the adhesion between ice or glass and model pdms coatings
,”
Adv. Eng. Mater.
25
,
2300098
(
2023
).
9.
C.
Creton
and
M.
Ciccotti
, “
Fracture and adhesion of soft materials: A review
,”
Rep. Prog. Phys.
79
,
046601
(
2016
).
10.
D.
Maugis
and
M.
Barquins
, “
Fracture mechanics and the adherence of viscoelastic bodies
,”
J. Phys. D: Appl. Phys.
11
,
1989
2023
(
1978
).
11.
D. H.
Kaelble
, “
Theory and analysis of peel adhesion: Rate-temperature dependence of viscoelastic interlayers
,”
J. Colloid Sci.
19
,
413
424
(
1964
).
12.
A. N.
Gent
and
R. P.
Petrich
, “
Adhesion of viscoelastic materials to rigid substrates
,”
Proc. R. Soc. London, Ser. A
310
,
433
448
(
1969
).
13.
A. N.
Gent
, “
Adhesion and strength of viscoelastic solids. is there a relationship between adhesion and bulk properties?
,”
Langmuir
12
,
4492
4496
(
1996
).
14.
A.
Gent
and
S.-M.
Lai
, “
Interfacial bonding, energy dissipation, and adhesion
,”
J. Polym. Sci., Part B: Polym. Phys.
32
,
1543
1555
(
1994
).
15.
A. N.
Gent
and
J.
Schultz
, “
Effect of wetting liquids on the strength of adhesion of viscoelastic material
,”
J. Adhes.
3
,
281
294
(
1972
).
16.
B. N. J.
Persson
and
E. A.
Brener
, “
Crack propagation in viscoelastic solids
,”
Phys. Rev. E
71
,
036123
(
2005
).
17.
K. R.
Shull
,
D.
Ahn
,
W.-L.
Chen
,
C. M.
Flanigan
, and
A. J.
Crosby
, “
Axisymmetric adhesion tests of soft materials
,”
Macromol. Chem. Phys.
199
,
489
511
(
1998
).
18.
N.
Rodriguez
,
P.
Mangiagalli
, and
B. N. J.
Persson
, “
Viscoelastic crack propagation: Review of theories and applications
,” in
Fatigue Crack Growth in Rubber Materials: Experiments and Modelling
, edited by
G.
Heinrich
,
R.
Kipscholl
and
R.
Stoček
(
Springer International Publishing
,
Cham
,
2021
), pp.
377
420
.
19.
E.
Barthel
and
C.
Frétigny
, “
Adhesive contact of elastomers: Effective adhesion energy and creep function
,”
J. Phys. D: Appl. Phys.
42
,
195302
(
2009
).
20.
M.
Ciavarella
,
G.
Cricri
, and
R.
McMeeking
, “
A comparison of crack propagation theories in viscoelastic materials
,”
Theor. Appl. Fract. Mech.
116
,
103113
(
2021
).
21.
B.
Persson
, “
On opening crack propagation in viscoelastic solids
,”
Tribol. Lett.
69
,
115
(
2021
).
22.
B.
Persson
, “
A simple model for viscoelastic crack propagation
,”
Eur. Phys. J. E
44
,
3
(
2021
).
23.
B.
Lorenz
,
B. A.
Krick
,
N.
Mulakaluri
,
M.
Smolyakova
,
S.
Dieluweit
,
W. G.
Sawyer
, and
B. N. J.
Persson
, “
Adhesion: Role of bulk viscoelasticity and surface roughness
,”
J. Phys.: Condens. Matter
25
,
225004
(
2013
).
24.
A.
Tiwari
,
L.
Dorogin
,
A. I.
Bennett
,
K. D.
Schulze
,
W. G.
Sawyer
,
M.
Tahir
,
G.
Heinrich
, and
B. N. J.
Persson
, “
The effect of surface roughness and viscoelasticity on rubber adhesion
,”
Soft Matter
13
,
3602
3621
(
2017
).
25.
Y.
Morishita
,
K.
Tsunoda
, and
K.
Urayama
, “
Universal relation between crack-growth dynamics and viscoelasticity in glass-rubber transition for filled elastomers
,”
Polymer
179
,
121651
(
2019
).
26.
M. H.
Müser
and
B. N. J.
Persson
, “
Crack and pull-off dynamics of adhesive, viscoelastic solids
,”
Europhys. Lett.
137
,
36004
(
2022
).
27.
L.-H.
Cai
,
T. E.
Kodger
,
R. E.
Guerra
,
A. F.
Pegoraro
,
M.
Rubinstein
, and
D. A.
Weitz
, “
Soft poly(dimethylsiloxane) elastomers from architecture-driven entanglement free design
,”
Adv. Mater.
27
,
5132
5140
(
2015
).
28.
H.
Kim
,
J. J.
Watkins
, and
A. J.
Crosby
, “
Adhesion and mechanical properties of poly(dimethylsiloxane) bottlebrush elastomers
,”
Soft Matter
19
,
5311
5317
(
2023
).
29.
D. H.
Kaelble
, “
Dispersion-polar surface tension properties of organic solids
,”
J. Adhes.
2
,
66
81
(
1970
).
30.
D. K.
Owens
and
R.
Wendt
, “
Estimation of the surface free energy of polymers
,”
J. Appl. Polym. Sci.
13
,
1741
1747
(
1969
).
31.
C.-Y.
Hui
,
B.
Zhu
, and
R.
Long
, “
Steady state crack growth in viscoelastic solids: A comparative study
,”
J. Mech. Phys. Solids
159
,
104748
(
2022
).
32.
P. G.
de Gennes
, “
Soft adhesives
,”
Langmuir
12
,
4497
4500
(
1996
).
33.
F.
Schneider
,
T.
Fellner
,
J.
Wilde
, and
U.
Wallrabe
, “
Mechanical properties of silicones for MEMS
,”
J. Micromech. Microeng.
18
,
065008
(
2008
).
34.
E.
Kroner
,
R.
Maboudian
, and
E.
Arzt
, “
Adhesion characteristics of pdms surfaces during repeated pull-off force measurements
,”
Adv. Eng. Mater.
12
,
398
404
(
2010
).
35.
Y.
Yu
,
D.
Sanchez
, and
N.
Lu
, “
Work of adhesion/separation between soft elastomers of different mixing ratios
,”
J. Mater. Res.
30
,
2702
2712
(
2015
).
36.
T.
Elder
,
T.
Twohig
,
H.
Singh
, and
A. B.
Croll
, “
Adhesion of a tape loop
,”
Soft Matter
16
,
10611
10619
(
2020
).
37.
J. D.
Glover
,
C. E.
McLaughlin
,
M. K.
McFarland
, and
J. T.
Pham
, “
Extracting uncrosslinked material from low modulus sylgard 184 and the effect on mechanical properties
,”
J. Polym. Sci.
58
,
343
351
(
2020
).
38.
A.
Ghatak
,
K.
Vorvolakos
,
H.
She
,
D. L.
Malotky
, and
M. K.
Chaudhury
, “
Interfacial rate processes in adhesion and friction
,”
J. Phys. Chem. B
104
,
4018
4030
(
2000
).
39.
A.
Clauset
,
C. R.
Shalizi
, and
M. E. J.
Newman
, “
Power-law distributions in empirical data
,”
SIAM Rev.
51
,
661
703
(
2009
).

Supplementary Material

You do not currently have access to this content.