The electric double layer (EDL) has a pivotal role in screening charges on surfaces as in supercapacitor electrodes or colloidal and polymer solutions. Its structure is determined by correlations between the finite-sized ionic charge carriers of the underlying electrolyte, and, this way, these correlations affect the properties of the EDL and of applications utilizing EDLs. We study the structure of EDLs within classical density functional theory (DFT) in order to uncover whether a structural transition in the first layer of the EDL that is driven by changes in the surface potential depends on specific particle interactions or has a general footing. This transition has been found in full-atom simulations. Thus far, investigating the in-plane structure of the EDL for the primitive model (PM) using DFT has proved a challenge. We show here that the use of an appropriate functional predicts the in-plane structure of EDLs in excellent agreement with molecular dynamics simulations. This provides the playground to investigate how the structure factor within a layer parallel to a charged surface changes as a function of both the applied surface potential and its separation from the surface. We discuss pitfalls in properly defining an in-plane structure factor and fully map out the structure of the EDL within the PM for a wide range of electrostatic electrode potentials. However, we do not find any signature of a structural crossover and conclude that the previously reported effect is not fundamental but rather occurs due to the specific force field of ions used in the simulations.

1.
P.
Simon
and
Y.
Gogotsi
, “
Materials for electrochemical capacitors
,”
Nat. Mater.
7
,
845
(
2008
).
2.
S.
Porada
,
R.
Zhao
,
A.
van der Wal
,
V.
Presser
, and
P.
Biesheuvel
, “
Review on the science and technology of water desalination by capacitive deionization
,”
Prog. Mater. Sci.
58
,
1388
(
2013
).
3.
A.
Härtel
,
M.
Janssen
,
D.
Weingarth
,
V.
Presser
, and
R.
van Roij
, “
Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors
,”
Energy Environ. Sci.
8
,
2396
(
2015
).
4.
E. J. W.
Verwey
,
J. T. G.
Overbeek
, and
K.
van Nes
,
Theory of the Stability of Lyophobic Colloids: The Interaction of Sol Particles having an Electric Double Layer
(Elsevier, New York-Amsterdam,
1948
).
5.
A. A.
Kornyshev
,
D. J.
Lee
,
S.
Leikin
, and
A.
Wynveen
, “
Structure and interactions of biological helices
,”
Rev. Mod. Phys.
79
,
943
(
2007
).
6.
M.
Shapiro
,
K.
Homma
,
S.
Villarreal
,
C.-P.
Richter
, and
F.
Bezanilla
, “
Infrared light excites cells by changing their electrical capacitance
,”
Nat. Commun.
3
,
736
(
2012
).
7.
H.
Helmholtz
, “
Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern mit anwendung auf die thierisch-elektrischen versuche
,”
Ann. Phys. Chem.
165
,
211
(
1853
).
8.
P.
Debye
and
E.
Hückel
, “
Zur theorie der elektrolyte. I. Gefrierpunktserniedrigung und verwandte erscheinungen
,”
Phys. Z.
24
(9),
185
(
1923
).
9.
M.
Gouy
, “
Sur la constitution de la charge électrique à la surface d’un électrolyte
,”
J. Phys. Theor. Appl.
9
,
457
(
1910
).
10.
D. L.
Chapman
, “
Li. a contribution to the theory of electrocapillarity
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
25
,
475
(
1913
).
11.
P. K.
Jones
,
K. D.
Fong
,
K. A.
Persson
, and
A. A.
Lee
, “
Inferring global dynamics from local structure in liquid electrolytes
,” arXiv:2208.03182 [cond-mat.soft] (
2022
).
12.
A.
Härtel
,
M.
Bültmann
, and
F.
Coupette
, “
Anomalous underscreening in the restricted primitive model
,”
Phys. Rev. Lett.
130
,
108202
(
2023
).
13.
J. E.
Vos
,
D.
Inder Maur
,
H. P.
Rodenburg
,
L.
van den Hoven
,
S. E.
Schoemaker
,
P. E.
de Jongh
, and
B. H.
Erné
, “
Electric potential of ions in electrode micropores deduced from calorimetry
,”
Phys. Rev. Lett.
129
,
186001
(
2022
).
14.
M. A.
Gebbie
,
H. A.
Dobbs
,
M.
Valtiner
, and
J. N.
Israelachvili
, “
Long-range electrostatic screening in ionic liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
7432
(
2015
).
15.
A. M.
Smith
,
A. A.
Lee
, and
S.
Perkin
, “
The electrostatic screening length in concentrated electrolytes increases with concentration
,”
J. Phys. Chem. Lett.
7
,
2157
(
2016
).
16.
R.
Roth
and
D.
Gillespie
, “
Shells of charge: A density functional theory for charged hard spheres
,”
J. Phys.: Condens. Matter
28
,
244006
(
2016
).
17.
A.
Härtel
, “
Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it
,”
J. Phys.: Condens. Matter
29
,
423002
(
2017
).
18.
P.
Cats
,
R.
Evans
,
A.
Härtel
, and
R.
van Roij
, “
Primitive model electrolytes in the near and far field: Decay lengths from DFT and simulations
,”
J. Chem. Phys.
154
,
124504
(
2021
).
19.
P.
Cats
,
R.
Sitlapersad
,
W.
den Otter
,
A.
Thornton
, and
R.
van Roij
, “
Capacitance and structure of electric double layers: Comparing Brownian dynamics and classical density functional theory
,”
J. Solution Chem.
51
,
296
(
2021
).
20.
P.
Cats
and
R.
van Roij
, “
The differential capacitance as a probe for the electric double layer structure and the electrolyte bulk composition
,”
J. Chem. Phys.
155
,
104702
(
2021
).
21.
M.
Bültmann
and
A.
Härtel
, “
The primitive model in classical density functional theory: Beyond the standard mean-field approximation
,”
J. Phys.: Condens. Matter
34
,
235101
(
2022
).
22.
C.
Merlet
,
D. T.
Limmer
,
M.
Salanne
,
R.
van Roij
,
P. A.
Madden
,
D.
Chandler
, and
B.
Rotenberg
, “
The electric double layer has a life of its own
,”
J. Phys. Chem. C
118
,
18291
(
2014
).
23.
A.
Härtel
,
S.
Samin
, and
R.
van Roij
, “
Dense ionic fluids confined in planar capacitors: In- and out-of-plane structure from classical density functional theory
,”
J. Phys.: Condens. Matter
28
,
244007
(
2016
).
24.
L.
Mier-y-Teran
,
S. H.
Suh
,
H. S.
White
, and
H. T.
Davis
, “
A nonlocal free-energy density-functional approximation for the electrical double layer
,”
J. Chem. Phys.
92
,
5087
(
1990
).
25.
Theory of simple liquids
,” in
Theory of Simple Liquids
, 4th ed., edited by
J.-P.
Hansen
and
I. R.
McDonald
(
Academic Press
,
Oxford
,
2013
).
26.
A.
Härtel
,
M.
Kohl
, and
M.
Schmiedeberg
, “
Anisotropic pair correlations in binary and multicomponent hard-sphere mixtures in the vicinity of a hard wall: A combined density functional theory and simulation study
,”
Phys. Rev. E
92
,
042310
(
2015
).
27.
S. M.
Tschopp
and
J. M.
Brader
, “
Fundamental measure theory of inhomogeneous two-body correlation functions
,”
Phys. Rev. E
103
,
042103
(
2021
).
28.
T. M.
Truskett
,
S.
Torquato
,
S.
Sastry
,
P. G.
Debenedetti
, and
F. H.
Stillinger
, “
Structural precursor to freezing in the hard-disk and hard-sphere systems
,”
Phys. Rev. E
58
,
3083
(
1998
).
29.
T. V.
Ramakrishnan
and
M.
Yussouff
, “
First-principles order-parameter theory of freezing
,”
Phys. Rev. B
19
,
2775
(
1979
).
30.
D.
Gonzalez
,
L.
Gonzalez
, and
M.
Silbert
, “
Structure and thermodynamics of hard D-dimensional spheres: Overlap volume function approach
,”
Mol. Phys.
74
,
613
(
1991
).
31.

We consider a grand-canonical ensemble where no chemical reactions are involved.

32.
R.
Evans
, “
The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids
,”
Adv. Phys.
28
,
143
(
1979
).
33.
R.
Roth
, “
Fundamental measure theory for hard-sphere mixtures: A review
,”
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
34.
H.
Hansen-Goos
and
R.
Roth
, “
Density functional theory for hard-sphere mixtures: The white bear version mark II
,”
J. Phys.: Condens. Matter
18
,
8413
(
2006
).
35.
E.
Waisman
and
J. L.
Lebowitz
, “
Exact solution of an integral equation for the structure of a primitive model of electrolytes
,”
J. Chem. Phys.
52
,
4307
(
1970
).
36.
E.
Waisman
and
J. L.
Lebowitz
, “
Mean spherical model integral equation for charged hard spheres. I. Method of solution
,”
J. Chem. Phys.
56
,
3086
(
1972
).
37.
E.
Waisman
and
J. L.
Lebowitz
, “
Mean spherical model integral equation for charged hard spheres. II. Results
,”
J. Chem. Phys.
56
,
3093
(
1972
).
38.
K.
Hiroike
, “
Supplement to Blum’s theory for asymmetric electrolytes
,”
Mol. Phys.
33
,
1195
(
1977
).
39.
A.
Härtel
,
M.
Oettel
,
R. E.
Rozas
,
S. U.
Egelhaaf
,
J.
Horbach
, and
H.
Löwen
, “
Tension and stiffness of the hard sphere crystal-fluid interface
,”
Phys. Rev. Lett.
108
,
226101
(
2012
).
40.
P.
Tarazona
, “
Density functional for hard sphere crystals: A fundamental measure approach
,”
Phys. Rev. Lett.
84
,
694
(
2000
).
41.

Note that Eq. (12) corresponds to the in-plane structure factor calculated in Ref. 23, which they present in their Figs. 6 and 7.

42.

Note the big difference in the surface potential from the MFC and MSAc functional that is needed to reproduce the numbers from MD. The surface potentials for the MFC functional are Φ0 = 0 V, Φ0 = 0.1 V, and Φ0 = 0.5 V for Figs. 2(a)2(c), respectively.

43.
A.
Huerta
,
V.
Carrasco-Fadanelli
, and
A.
Trokhymchuk
, “
Towards frustration of freezing transition in a binary hard-disk mixture
,”
Condens. Matter Phys.
15
,
43604
(
2012
).
44.
A.
Huerta
,
D.
Henderson
, and
A.
Trokhymchuk
, “
Freezing of two-dimensional hard disks
,”
Phys. Rev. E
74
,
061106
(
2006
).
45.
A.
Marcovitz
,
A.
Naftaly
, and
Y.
Levy
, “
Water organization between oppositely charged surfaces: Implications for protein sliding along DNA
,”
J. Chem. Phys.
142
,
085102
(
2015
).
46.
E.
Gongadze
,
L.
Mesarec
,
V.
kralj iglic
, and
A.
Iglic
, “
Asymmetric finite size of ions and orientational ordering of water in electric double layer theory within lattice model
,”
Mini Rev. Med. Chem.
18
,
1559
(
2018
).
47.
B.
Chu
,
D.
Biriukov
,
M.
Bischoff
,
M.
Předota
,
S.
Roke
, and
A.
Marchioro
, “
Evolution of the electrical double layer with electrolyte concentration probed by second harmonic scattering
,”
Faraday Discuss.
246
,
407
(
2023
).
48.
L.
Blum
, “
Solution of a model for the solvent-electrolyte interactions in the mean spherical approximation
,”
J. Chem. Phys.
61
,
2129
(
1974
).
49.
L.
Blum
, “
Mean spherical model for asymmetric electrolytes
,”
Mol. Phys.
30
,
1529
(
1975
).
50.
L.
Blum
and
J. S.
Hoeye
, “
Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function
,”
J. Phys. Chem.
81
,
1311
(
1977
).
51.
L.
Blum
and
Y.
Rosenfeld
, “
Relation between the free energy and the direct correlation function in the mean spherical approximation
,”
J. Stat. Phys.
63
,
1177
(
1991
).
52.
A.
Voukadinova
,
M.
Valiskó
, and
D.
Gillespie
, “
Assessing the accuracy of three classical density functional theories of the electrical double layer
,”
Phys. Rev. E
98
,
012116
(
2018
).
You do not currently have access to this content.