The probability of inserting, without overlap, a hard spherical particle of diameter σ in a hard-sphere fluid of diameter σ0 and packing fraction η determines its excess chemical potential at infinite dilution, μex(σ, η). In our previous work [R. L. Davidchack and B. B. Laird, J. Chem. Phys. 157, 074701 (2022)], we used Widom’s particle insertion method within molecular dynamics simulations to obtain high precision results for μex(σ, η) with σ/σ0 ≤ 4 and η ≤ 0.5. In the current work, we investigate the behavior of this quantity at small σ. In particular, using the inclusion-exclusion principle, we relate the insertion probability to the hard-sphere fluid distribution functions and thus derive the higher-order terms in the Taylor expansion of μex(σ, η) at σ = 0. We also use direct evaluation of the excluded volume for pairs and triplets of hard spheres to obtain simulation results for μex(σ, η) at σ/σ0 ≤ 0.2247 that are of much higher precision than those obtained earlier with Widom’s method. These results allow us to improve the quality of the small-σ correction in the empirical expression for μex(σ, η) presented in our previous work.

1.
R. C.
Tolman
,
The Principles of Statistical Mechanics
(
Oxford University Press
,
London
,
1938
).
2.
H.
Reiss
,
H. L.
Frisch
, and
J. L.
Lebowitz
, “
Statistical mechanics of rigid spheres
,”
J. Chem. Phys.
31
,
369
380
(
1959
).
3.
B.
Widom
, “
Some topics in the theory of fluids
,”
J. Chem. Phys.
39
,
2808
2812
(
1963
).
4.
D. M.
Heyes
and
A.
Santos
, “
Chemical potential of a test hard sphere of variable size in a hard-sphere fluid
,”
J. Chem. Phys.
145
,
214504
(
2016
).
5.
H.
Reiss
and
P.
Schaaf
, “
Hard spheres: Thermodynamics and geometry
,”
J. Chem. Phys.
91
,
2514
2524
(
1989
).
6.
W. R.
Smith
and
S.
Labík
, “
Two new exact criteria for hard-sphere mixtures
,”
Mol. Phys.
80
,
1561
1564
(
1993
).
7.
S.
Labík
,
V.
Jirásek
,
A.
Malijevský
, and
W. R.
Smith
, “
Modifications of the SP-MC method for the computer simulation of chemical potentials: Ternary mixtures of fused hard sphere fluids
,”
Mol. Phys.
94
,
385
393
(
1998
).
8.
S. N. L.
Krishna
and
B.
Athreya
,
Measure Theory and Probability Theory
(
Springer
,
New York
,
2006
).
9.
J. E.
Mayer
and
E.
Montroll
, “
Molecular distribution
,”
J. Chem. Phys.
9
,
2
16
(
1941
).
10.
R. L.
Davidchack
and
B. B.
Laird
, “
Chemical potential and surface free energy of a hard spherical particle in hard-sphere fluid over the full range of particle diameters
,”
J. Chem. Phys.
157
,
074701
(
2022
).
11.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 2nd ed. (
Academic Press
,
London
,
1986
).
12.
D. M.
Heyes
,
M.
Cass
,
A. C.
Brańka
, and
H.
Okumura
, “
First derivative of the hard-sphere radial distribution function at contact
,”
J. Phys.: Condens. Matter
18
,
7553
(
2006
).
13.
W. R.
Smith
and
D.
Henderson
, “
Analytical representation of the Percus-Yevick hard-sphere radial distribution function
,”
Mol. Phys.
19
,
411
415
(
1970
).
14.
T.
Boublík
, “
Hard-sphere equation of state
,”
J. Chem. Phys.
53
,
471
472
(
1970
).
15.
G.
Mansoori
,
N. F.
Carnahan
,
K.
Starling
, and
T.
Leland
, Jr.
, “
Equilibrium thermodynamic properties of the mixture of hard spheres
,”
J. Chem. Phys.
54
,
1523
1525
(
1971
).
16.
T.
Boublík
, “
Equations of state of hard body fluids
,”
Mol. Phys.
59
,
371
380
(
1986
).
17.
A.
Trokhymchuk
,
I.
Nezbeda
,
J.
Jirsák
, and
D.
Henderson
, “
Hard-sphere radial distribution function again
,”
J. Chem. Phys.
123
,
024501
(
2005
).
18.
A.
Santos
,
S. B.
Yuste
, and
M.
López de Haro
, “
Structural and thermodynamic properties of hard-sphere fluids
,”
J. Chem. Phys.
153
,
120901
(
2020
).
19.
J. A.
Krumhansl
and
S.
Wang
, “
Triplet correlation in liquid argon by Monte Carlo method: Low densities
,”
J. Chem. Phys.
56
,
2034
2041
(
1972
).
20.
K. D.
Gibson
and
H. A.
Scheraga
, “
Volume of the intersection of three spheres of unequal size: A simplified formula
,”
J. Phys. Chem.
91
,
4121
4122
(
1987
).
21.
E. A.
Müller
and
K. E.
Gubbins
, “
Triplet correlation function for hard sphere systems
,”
Mol. Phys.
80
,
91
101
(
1993
).
22.
R. L.
Davidchack
,
B. B.
Laird
, and
R.
Roth
, “
Parameterising the surface free energy and excess adsorption of a hard-sphere fluid at a planar hard wall
,”
Mol. Phys.
113
,
1091
1096
(
2015
).
23.
R.
Tolman
, “
The effect of droplet size on surface tension
,”
J. Chem. Phys.
17
,
333
337
(
1949
).
24.
R. L.
Davidchack
and
B. B.
Laird
, “
Surface free energy of a hard-sphere fluid at curved walls: Deviations from morphometric thermodynamics
,”
J. Chem. Phys.
149
,
174706
(
2018
).
25.
I.
Urrutia
, “
Bending rigidity and higher-order curvature terms for the hard-sphere fluid near a curved wall
,”
Phys. Rev. E
89
,
032122
(
2014
).
26.
H.
Hansen-Goos
, “
Communication: Non-Hadwiger terms in morphological thermodynamics of fluids
,”
J. Chem. Phys.
141
,
171101
(
2014
).
27.
H.
Reiss
,
H.
Frisch
,
E.
Helfand
, and
J.
Lebowitz
, “
Aspects of the statistical thermodynamics of real fluids
,”
J. Chem. Phys.
32
,
119
(
1960
).
28.
S. C.
Martin
,
B. B.
Laird
,
R.
Roth
, and
H.
Hansen-Goos
, “
Thermodynamics of the hard-disk fluid at a planar hard wall: Generalized scaled-particle theory and Monte Carlo simulation
,”
J. Chem. Phys.
149
,
084701
(
2018
).
You do not currently have access to this content.