Molecular dynamics simulations have been widely used in exploring the nucleation behavior of many systems, including gas hydrates. Gas hydrates are ice-like solids in which gas molecules are trapped in water cages. During hydrate formation, a considerable amount of heat is released, and previous work has reported that the choice of temperature control scheme may affect the behavior of hydrate formation. The origins of this effect have remained an open question. To address this question, extensive NVE simulations and thermostatted (NPT and NVT) simulations with different temperature coupling strengths have been performed and compared for systems where a water nanodroplet is immersed in a H2S liquid. Detailed analysis of the hydrate structures and their mechanisms of formation has been carried out. Slower nucleation rates in NVE simulations in comparison to NPT simulations have been observed in agreement with previous studies. Probability distributions for various temperature measures along with their spatial distributions have been examined. Interestingly, a comparison of these temperature distributions reveals a small yet noticeable difference in the widths of the distributions for water. The somewhat reduced fluctuations in the temperature for the water species in the NVE simulations appear to be responsible for reducing the hydrate nucleation rate. We further conjecture that the NVE-impeded nucleation rate may be the result of the finite size of the surroundings (here the liquid H2S portion of the system). Additionally, a local spatial temperature gradient arising from the heat released during hydrate formation could not be detected.

1.
E. D.
Sloan
,
C. A.
Koh
, and
C.
Koh
,
Clathrate Hydrates of Natural Gases
(
CRC Press
,
Boca Raton, FL
,
2007
).
2.
M.
Kastner
,
M.
Myers
,
C. A.
Koh
,
G.
Moridis
,
J. E.
Johnson
, and
J.
Thurmond
, “
Energy transition and climate mitigation require increased effort on methane hydrate research
,”
Energy Fuels
36
(
6
),
2923
2926
(
2022
).
3.
Z.
Yin
and
P.
Linga
, “
Methane hydrates: A future clean energy resource
,”
Chin. J. Chem. Eng.
27
(
9
),
2026
2036
(
2019
).
4.
J. L.
Wadham
,
S.
Arndt
,
S.
Tulaczyk
,
M.
Stibal
,
M.
Tranter
,
J.
Telling
,
G. P.
Lis
,
E.
Lawson
,
A.
Ridgwell
,
A.
Dubnick
,
M. J.
Sharp
,
A. M.
Anesio
, and
C. E. H.
Butler
, “
Potential methane reservoirs beneath Antarctica
,”
Nature
488
(
7413
),
633
637
(
2012
).
5.
Y.-S.
Yu
,
X.
Zhang
,
J.-W.
Liu
,
Y.
Lee
, and
X.-S.
Li
, “
Natural gas hydrate resources and hydrate technologies: A review and analysis of the associated energy and global warming challenges
,”
Energy Environ. Sci.
14
(
11
),
5611
5668
(
2021
).
6.
M.
Khurana
,
Z.
Yin
, and
P.
Linga
, “
A review of clathrate hydrate nucleation
,”
ACS Sustainable Chem. Eng.
5
(
12
),
11176
11203
(
2017
).
7.
A.
Hassanpouryouzband
,
E.
Joonaki
,
M.
Vasheghani Farahani
,
S.
Takeya
,
C.
Ruppel
,
J.
Yang
,
N. J.
English
,
J. M.
Schicks
,
K.
Edlmann
,
H.
Mehrabian
,
Z. M.
Aman
, and
B.
Tohidi
, “
Gas hydrates in sustainable chemistry
,”
Chem. Soc. Rev.
49
(
15
),
5225
5309
(
2020
).
8.
Z.
Cheng
,
S.
Li
,
Y.
Liu
,
Y.
Zhang
,
Z.
Ling
,
M.
Yang
,
L.
Jiang
, and
Y.
Song
, “
Post-combustion CO2 capture and separation in flue gas based on hydrate technology: A review
,”
Renewable Sustainable Energy Rev.
154
,
111806
(
2022
).
9.
H. P.
Veluswamy
,
A.
Kumar
,
Y.
Seo
,
J. D.
Lee
, and
P.
Linga
, “
A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates
,”
Appl. Energy
216
,
262
285
(
2018
).
10.
M.
Khan
,
P.
Warrier
,
C.
Peters
, and
C.
Koh
, “
Hydrate-based separation for industrial gas mixtures
,”
Energies
15
(
3
),
966
(
2022
).
11.
H.
Dong
,
J.
Wang
,
Z.
Xie
,
B.
Wang
,
L.
Zhang
, and
Q.
Shi
, “
Potential applications based on the formation and dissociation of gas hydrates
,”
Renewable Sustainable Energy Rev.
143
,
110928
(
2021
).
12.
P.
Babu
,
A.
Nambiar
,
T.
He
,
I. A.
Karimi
,
J. D.
Lee
,
P.
Englezos
, and
P.
Linga
, “
A review of clathrate hydrate based desalination to strengthen energy-water nexus
,”
ACS Sustainable Chem. Eng.
6
(
7
),
8093
8107
(
2018
).
13.
B.
Shi
,
S.
Song
,
Y.
Chen
,
X.
Duan
,
Q.
Liao
,
S.
Fu
,
L.
Liu
,
J.
Sui
,
J.
Jia
,
H.
Liu
,
Y.
Zhu
,
C.
Song
,
D.
Lin
,
T.
Wang
,
J.
Wang
,
H.
Yao
, and
J.
Gong
, “
Status of natural gas hydrate flow assurance research in China: A review
,”
Energy Fuels
35
(
5
),
3611
3658
(
2021
).
14.
G. C.
Sosso
,
J.
Chen
,
S. J.
Cox
,
M.
Fitzner
,
P.
Pedevilla
,
A.
Zen
, and
A.
Michaelides
, “
Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations
,”
Chem. Rev.
116
(
12
),
7078
7116
(
2016
).
15.
J.
Grabowska
,
S.
Blazquez
,
E.
Sanz
,
I. M.
Zerón
,
J.
Algaba
,
J. M.
Míguez
,
F. J.
Blas
, and
C.
Vega
, “
Solubility of methane in water: Some useful results for hydrate nucleation
,”
J. Phys. Chem. B
126
(
42
),
8553
8570
(
2022
).
16.
M. R.
Ghaani
,
C. C. R.
Allen
,
T.
Skvortsov
, and
N. J.
English
, “
Engineering peptides to catalyze and control stabilization of gas hydrates: Learning from nature
,”
J. Phys. Chem. Lett.
11
(
13
),
5068
5075
(
2020
).
17.
G.-J. J.
Guo
,
P. M.
Rodger
, and
P.
Mark Rodger
, “
Solubility of aqueous methane under metastable conditions: Implications for gas hydrate nucleation
,”
J. Phys. Chem. B
117
(
21
),
6498
6504
(
2013
).
18.
B. C.
Knott
,
V.
Molinero
,
M. F.
Doherty
, and
B.
Peters
, “
Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions
,”
J. Am. Chem. Soc.
134
(
48
),
19544
19547
(
2012
).
19.
S.
Sarupria
and
P. G.
Debenedetti
, “
Homogeneous nucleation of methane hydrate in microsecond molecular dynamics simulations
,”
J. Phys. Chem. Lett.
3
(
20
),
2942
2947
(
2012
).
20.
M. R.
Walsh
,
G. T.
Beckham
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
Methane hydrate nucleation rates from molecular dynamics simulations: Effects of aqueous methane concentration, interfacial curvature, and system size
,”
J. Phys. Chem. C
115
(
43
),
21241
21248
(
2011
).
21.
M. R.
Walsh
,
J. D.
Rainey
,
P. G.
Lafond
,
D.-H.
Park
,
G. T.
Beckham
,
M. D.
Jones
,
K.-H.
Lee
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
The cages, dynamics, and structuring of incipient methane clathrate hydrates
,”
Phys. Chem. Chem. Phys.
13
(
44
),
19951
(
2011
).
22.
L. C.
Jacobson
and
V.
Molinero
, “
Can amorphous nuclei grow crystalline clathrates? The size and crystallinity of critical clathrate nuclei
,”
J. Am. Chem. Soc.
133
(
16
),
6458
6463
(
2011
).
23.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Amorphous precursors in the nucleation of clathrate hydrates
,”
J. Am. Chem. Soc.
132
(
33
),
11806
11811
(
2010
).
24.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
, “
Microsecond simulations of spontaneous methane hydrate nucleation and growth
,”
Science
326
(
5956
),
1095
1098
(
2009
).
25.
Z.
He
,
K. M.
Gupta
,
P.
Linga
, and
J.
Jiang
, “
Molecular insights into the nucleation and growth of CH4 and CO2 mixed hydrates from microsecond simulations
,”
J. Phys. Chem. C
120
(
44
),
25225
25236
(
2016
).
26.
Q.
Liao
,
B.
Shi
,
S.
Li
,
S.
Song
,
Y.
Chen
,
J.
Zhang
,
H.
Yao
,
Q.
Li
, and
J.
Gong
, “
Molecular dynamics simulation of the effect of wax molecules on methane hydrate formation
,”
Fuel
297
,
120778
(
2021
).
27.
Z.
Zhang
,
P. G.
Kusalik
, and
G.-J.
Guo
, “
Bridging solution properties to gas hydrate nucleation through guest dynamics
,”
Phys. Chem. Chem. Phys.
20
(
38
),
24535
24538
(
2018
).
28.
Z.
He
,
K.
Zhang
, and
J.
Jiang
, “
Formation of CH4 hydrate in a mesoporous metal-organic framework MIL-101: Mechanistic insights from microsecond molecular dynamics simulations
,”
J. Phys. Chem. Lett.
10
(
22
),
7002
7008
(
2019
).
29.
K. W.
Hall
,
Z.
Zhang
, and
P. G.
Kusalik
, “
Unraveling mixed hydrate formation: Microscopic insights into early stage behavior
,”
J. Phys. Chem. B
120
(
51
),
13218
13223
(
2016
).
30.
L.
Wang
,
K.
Hall
,
Z.
Zhang
, and
P.
Kusalik
, “
Mixed hydrate nucleation: Molecular mechanisms and cage structures
,”
J. Phys. Chem. B
126
(
36
),
7015
7026
(
2022
).
31.
L.
Wang
,
Z.
Zhang
, and
P. G.
Kusalik
, “
Hydrate nucleation in water nanodroplets: Key factors and molecular mechanisms
,”
Energy Fuels
37
(
2
),
1044
1056
(
2023
).
32.
D. W.
Kang
,
W.
Lee
,
Y.-H.
Ahn
, and
J. W.
Lee
, “
Exploring tuning phenomena of THF-H2 hydrates via molecular dynamics simulations
,”
J. Mol. Liq.
349
,
118490
(
2022
).
33.
Z.
Zhang
,
G.-J.
Guo
,
N.
Wu
, and
P. G.
Kusalik
, “
Molecular insights into guest and composition dependence of mixed hydrate nucleation
,”
J. Phys. Chem. C
124
(
45
),
25078
25086
(
2020
).
34.
M. M.
Conde
,
M. A.
Gonzalez
,
J. L. F.
Abascal
, and
C.
Vega
, “
Determining the phase diagram of water from direct coexistence simulations: The phase diagram of the TIP4P/2005 model revisited
,”
J. Chem. Phys.
139
(
15
),
154505
(
2013
).
35.
Z.
Zhang
,
P. G.
Kusalik
, and
G.-J.
Guo
, “
Might a 2,2-dimethylbutane molecule serve as a site to promote gas hydrate nucleation?
,”
J. Phys. Chem. C
123
(
33
),
20579
20586
(
2019
).
36.
P.
Naullage
,
A. A.
Bertolazzo
, and
V.
Molinero
, “
How do surfactants control the agglomeration of clathrate hydrates?
,”
ACS Cent. Sci.
5
(
3
),
428
439
(
2019
).
37.
S.
Liang
and
P. G.
Kusalik
, “
Nucleation of gas hydrates within constant energy systems
,”
J. Phys. Chem. B
117
(
5
),
1403
1410
(
2013
).
38.
Y.
Bi
,
A.
Porras
, and
T.
Li
, “
Free energy landscape and molecular pathways of gas hydrate nucleation
,”
J. Chem. Phys.
145
(
21
),
211909
(
2016
).
39.
Z.
Zhang
,
M. R.
Walsh
, and
G. J.
Guo
, “
Microcanonical molecular simulations of methane hydrate nucleation and growth: Evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways
,”
Phys. Chem. Chem. Phys.
17
(
14
),
8870
8876
(
2015
).
40.
Z.
Zhang
,
C.-J.
Liu
,
M. R.
Walsh
, and
G.-J.
Guo
, “
Effects of ensembles on methane hydrate nucleation kinetics
,”
Phys. Chem. Chem. Phys.
18
(
23
),
15602
15608
(
2016
).
41.
D.
Yuhara
,
B. C.
Barnes
,
D.
Suh
,
B. C.
Knott
,
G. T.
Beckham
,
K.
Yasuoka
,
D. T.
Wu
, and
A. K.
Sum
, “
Nucleation rate analysis of methane hydrate from molecular dynamics simulations
,”
Faraday Discuss.
179
,
463
474
(
2015
).
42.
M.
Lauricella
,
S.
Meloni
,
N. J.
English
,
B.
Peters
, and
G.
Ciccotti
, “
Methane clathrate hydrate nucleation mechanism by advanced molecular simulations
,”
J. Phys. Chem. C
118
(
40
),
22847
22857
(
2014
).
43.
F.
Jiménez-Ángeles
and
A.
Firoozabadi
, “
Nucleation of methane hydrates at moderate subcooling by molecular dynamics simulations
,”
J. Phys. Chem. C
118
(
21
),
11310
11318
(
2014
).
44.
Y.
Bi
and
T.
Li
, “
Probing methane hydrate nucleation through the forward flux sampling method
,”
J. Phys. Chem. B
118
(
47
),
13324
13332
(
2014
).
45.
B. C.
Barnes
,
B. C.
Knott
,
G. T.
Beckham
,
D. T.
Wu
, and
A. K.
Sum
, “
Reaction coordinate of incipient methane clathrate hydrate nucleation
,”
J. Phys. Chem. B
118
(
46
),
13236
13243
(
2014
).
46.
S. A.
Aromada
,
B.
Kvamme
,
N.
Wei
, and
N.
Saeidi
, “
Enthalpies of hydrate formation and dissociation from residual thermodynamics
,”
Energies
12
(
24
),
4726
(
2019
).
47.
G. K.
Anderson
, “
Enthalpy of dissociation and hydration number of carbon dioxide hydrate from the Clapeyron equation
,”
J. Chem. Thermodyn.
35
(
7
),
1171
1183
(
2003
).
48.
S.
Sun
,
Y.
Hao
, and
J.
Zhao
, “
Analysis of gas source for the replacement of CH4 with CO2 in gas hydrate production from the perspective of dissociation enthalpy
,”
J. Chem. Eng. Data
63
(
3
),
684
690
(
2018
).
49.
A.
Gupta
,
J.
Lachance
,
E. D.
Sloan
, and
C. A.
Koh
, “
Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry
,”
Chem. Eng. Sci.
63
(
24
),
5848
5853
(
2008
).
50.
I. N.
Tsimpanogiannis
,
V. K.
Michalis
, and
I. G.
Economou
, “
Enthalpy of dissociation of methane hydrates at a wide pressure and temperature range
,”
Fluid Phase Equilib.
489
,
30
40
(
2019
).
51.
C. A.
Fuzo
and
L.
Degrève
, “
Effect of the thermostat in the molecular dynamics simulation on the folding of the model protein chignolin
,”
J. Mol. Model.
18
(
6
),
2785
2794
(
2012
).
52.
K. W.
Hall
,
S.
Percec
, and
M. L.
Klein
, “
Polymer nucleation under high-driving force, long-chain conditions: Heat release and the separation of time scales
,”
J. Chem. Phys.
150
(
11
),
114901
(
2019
).
53.
V.
Tikkanen
,
B.
Reischl
,
H.
Vehkamäki
, and
R.
Halonen
, “
Nonisothermal nucleation in the gas phase is driven by cool subcritical clusters
,”
Proc. Natl. Acad. Sci. U. S. A.
119
(
28
),
e2201955119
(
2022
).
54.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nosé–Hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
(
4
),
2635
2643
(
1992
).
55.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
(
12
),
7182
7190
(
1981
).
56.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
57.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
(
23
),
234511
(
2005
).
58.
T. R.
Forester
,
I. R.
McDonald
, and
M. L.
Klein
, “
Intermolecular potentials and the properties of liquid and solid hydrogen sulphide
,”
Chem. Phys.
129
(
2
),
225
234
(
1989
).
59.
P. M.
Rodger
,
T. R.
Forester
, and
W.
Smith
, “
Simulations of the methane hydrate/methane gas interface near hydrate forming conditions conditions
,”
Fluid Phase Equilib.
116
(
1–2
),
326
332
(
1996
).
60.
C.
Moon
,
R. W.
Hawtin
, and
P. M.
Rodger
, “
Nucleation and control of clathrate hydrates: Insights from simulation
,”
Faraday Discuss.
136
,
367
382
(
2007
).
61.
G.-J.
Guo
,
Y.-G.
Zhang
,
C.-J.
Liu
, and
K.-H.
Li
, “
Using the face-saturated incomplete cage analysis to quantify the cage compositions and cage linking structures of amorphous phase hydrates
,”
Phys. Chem. Chem. Phys.
13
(
25
),
12048
(
2011
).
62.
K. W.
Hall
,
S.
Carpendale
, and
P. G.
Kusalik
, “
Evidence from mixed hydrate nucleation for a funnel model of crystallization
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
43
),
12041
12046
(
2016
).
63.
D.
Kashchiev
and
A.
Firoozabadi
, “
Driving force for crystallization of gas hydrates
,”
J. Cryst. Growth
241
(
1–2
),
220
230
(
2002
).
64.
M.
Lingenheil
,
R.
Denschlag
,
R.
Reichold
, and
P.
Tavan
, “
The ‘hot-solvent/cold-solute’ problem revisited
,”
J. Chem. Theory Comput.
4
(
8
),
1293
1306
(
2008
).
65.
K.
Dill
and
S.
Bromberg
,
Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience
(
CRC Press
,
2010
).
66.
K.
Oda
,
H.
Miyagawa
, and
K.
Kitamura
, “
How does the electrostatic force cut-off generate non-uniform temperature distributions in proteins?
,”
Mol. Simul.
16
(
1–3
),
167
177
(
1996
).

Supplementary Material

You do not currently have access to this content.