Since the form of the exact functional in density functional theory is unknown, we must rely on density functional approximations (DFAs). In the past, very promising results have been reported by combining semi-local DFAs with exact, i.e. Hartree–Fock, exchange. However, the spin-state energy ordering and the predictions of global minima structures are particularly sensitive to the choice of the hybrid functional and to the amount of exact exchange. This has been already qualitatively described for single conformations, reactions, and a limited number of conformations. Here, we have analyzed the mixing of exact exchange in exchange functionals for a set of several hundred isomers of the transition metal carbide, Mo4C2. The analysis of the calculated energies and charges using PBE0-type functional with varying amounts of exact exchange yields the following insights: (1) The sensitivity of spin-energy splitting is strongly correlated with the amount of exact exchange mixing. (2) Spin contamination is exacerbated when correlation is omitted from the exchange-correlation functional. (3) There is not one ideal value for the exact exchange mixing which can be used to parametrize or choose among the functionals. Calculated energies and electronic structures are influenced by exact exchange at a different magnitude within a given distribution; therefore, to extend the application range of hybrid functionals to the full periodic table the spin-energy splitting energies should be investigated.

1.
A. M.
Teale
,
T.
Helgaker
,
A.
Savin
,
C.
Adamo
,
B.
Aradi
,
A. V.
Arbuznikov
,
P. W.
Ayers
,
E.
Jan Baerends
,
V.
Barone
,
P.
Calaminici
,
E.
Cancès
,
E. A.
Carter
,
P.
Kumar Chattaraj
,
H.
Chermette
,
I.
Ciofini
,
T.
Daniel Crawford
,
F. D.
Proft
,
J. F.
Dobson
,
C.
Draxl
,
T.
Frauenheim
,
E.
Fromager
,
P.
Fuentealba
,
L.
Gagliardi
,
G.
Galli
,
J.
Gao
,
P.
Geerlings
,
N.
Gidopoulos
,
P. M. W.
Gill
,
P.
Gori-Giorgi
,
A.
Görling
,
T.
Gould
,
S.
Grimme
,
O.
Gritsenko
,
H. J.
Aagaard Jensen
,
E. R.
Johnson
,
R. O.
Jones
,
M.
Kaupp
,
A. M.
Köster
,
L.
Kronik
,
A. I.
Krylov
,
S.
Kvaal
,
A.
Laestadius
,
M.
Levy
,
M.
Lewin
,
S.
Liu
,
P.-F.
Loos
,
N. T.
Maitra
,
F.
Neese
,
J. P.
Perdew
,
K.
Pernal
,
P.
Pernot
,
P.
Piecuch
,
E.
Rebolini
,
L.
Reining
,
P.
Romaniello
,
A.
Ruzsinszky
,
D. R.
Salahub
,
M.
Scheffler
,
P.
Schwerdtfeger
,
V. N.
Staroverov
,
J.
Sun
,
E.
Tellgren
,
D. J.
Tozer
,
S. B.
Trickey
,
C. A.
Ullrich
,
A.
Vela
,
G.
Vignale
,
T. A.
Wesolowski
,
X.
Xu
, and
W.
Yang
, “
DFT exchange: Sharing perspectives on the workhorse of quantum chemistry and materials science
,”
Phys. Chem. Chem. Phys.
24
(
47
),
28700
28781
(
2022
).
2.
P.
Verma
and
D. G.
Truhlar
, “
Status and challenges of density functional theory
,”
Trends Chem.
2
(
4
),
302
318
(
2020
).
3.
B.
Huang
,
G. F.
von Rudorff
, and
O. A.
von Lilienfeld
, “
The central role of density functional theory in the AI age
,”
Science
381
(
6654
),
170
175
(
2023
).
4.
D. J.
Harding
,
P.
Gruene
,
M.
Haertelt
,
G.
Meijer
,
A.
Fielicke
,
S. M.
Hamilton
,
W. S.
Hopkins
,
S. R.
Mackenzie
,
S. P.
Neville
, and
T. R.
Walsh
, “
Probing the structures of gas-phase rhodium cluster cations by far-infrared spectroscopy
,”
J. Chem. Phys.
133
(
21
),
214304
(
2010
).
5.
Y.
Sun
,
R.
Fournier
, and
M.
Zhang
, “
Structural and electronic properties of 13-atom 4d transition-metal clusters
,”
Phys. Rev. A
79
(
4
),
043202
(
2009
).
6.
J. P.
Chou
,
H. Y. T.
Chen
,
C. R.
Hsing
,
C. M.
Chang
,
C.
Cheng
, and
C. M.
Wei
, “
13-atom metallic clusters studied by density functional theory: Dependence on exchange-correlation approximations and pseudopotentials
,”
Phys. Rev. B
80
(
16
),
165412
(
2009
).
7.
M. P.
Waller
,
H.
Braun
,
N.
Hojdis
, and
M.
Bühl
, “
Geometries of second-row transition-metal complexes from density-functional theory
,”
J. Chem. Theory Comput.
3
(
6
),
2234
2242
(
2007
).
8.
J. N.
Harvey
, “
On the accuracy of density functional theory in transition metal chemistry
,”
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
102
,
203
226
(
2006
).
9.
W.
Zhang
,
D. G.
Truhlar
, and
M.
Tang
, “
Tests of exchange-correlation functional approximations against reliable experimental data for average bond energies of 3d transition metal compounds
,”
J. Chem. Theory Comput.
9
(
9
),
3965
3977
(
2013
).
10.
M.
Kállay
,
J.
Gauss
, and
P. G.
Szalay
, “
Analytic first derivatives for general coupled-cluster and configuration interaction models
,”
J. Chem. Phys.
119
(
6
),
2991
3004
(
2003
).
11.
P.
Calaminici
,
F.
Janetzko
,
A. M.
Köster
,
R.
Mejia-Olvera
, and
B.
Zuniga-Gutierrez
, “
Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems
,”
J. Chem. Phys.
126
(
4
),
044108
(
2007
).
12.
M.
Swart
,
M.
Güell
,
J. M.
Luis
, and
M.
Solà
, “
Spin-state-corrected Gaussian-type orbital basis sets
,”
J. Phys. Chem. A
114
(
26
),
7191
7197
(
2010
).
13.
M.
Güell
,
J. M.
Luis
,
M.
Solà
, and
M.
Swart
, “
Importance of the basis set for the spin-state energetics of iron complexes
,”
J. Phys. Chem. A
112
(
28
),
6384
6391
(
2008
).
14.
M.
Swart
,
M.
Guell
, and
M.
Sola
, “
Electronic structure and biological activity
,” in
Quantum Biochemistry
(
Willey
,
New York
,
2010
), Vol.
2
, p.
551
.
15.
E.
Ramos-Cordoba
and
E.
Matito
, “
Local descriptors of dynamic and nondynamic correlation
,”
J. Chem. Theory Comput.
13
(
6
),
2705
2711
(
2017
).
16.
D.
Zhang
and
D. G.
Truhlar
, “
Unmasking static correlation error in hybrid Kohn–Sham density functional theory
,”
J. Chem. Theory Comput.
16
(
9
),
5432
5440
(
2020
).
17.
P.
Verma
and
D. G.
Truhlar
, “
Can Kohn–Sham density functional theory predict accurate charge distributions for both single-reference and multi-reference molecules?
,”
Phys. Chem. Chem. Phys.
19
(
20
),
12898
12912
(
2017
).
18.
P.
Calaminici
,
A. M.
Köster
,
T.
Carrington
, Jr.
,
P.
Roy
,
N.
Russo
, and
D. R.
Salahub
, “
V3: Structure and vibrations from density functional theory, Franck–Condon factors, and the pulsed-field ionization zero-electron-kinetic energy spectrum
,”
J. Chem. Phys.
114
,
4036
4044
(
2001
).
19.
J.
Gräfenstein
,
E.
Kraka
,
M.
Filatov
, and
D.
Cremer
, “
Can unrestricted density-functional theory describe open shell singlet biradicals?
,”
Int. J. Mol. Sci.
3
(
4
),
360
394
(
2002
).
20.
X.
Xu
,
W.
Zhang
,
M.
Tang
, and
D. G.
Truhlar
, “
Do practical standard coupled cluster calculations agree better than Kohn–Sham calculations with currently available functionals when compared to the best available experimental data for dissociation energies of bonds to 3d transition metals?
,”
J. Chem. Theory Comput.
11
(
5
),
2036
2052
(
2015
).
21.
U. R.
Fogueri
,
S.
Kozuch
,
A.
Karton
, and
J. M. L.
Martin
, “
A simple DFT-based diagnostic for nondynamical correlation
,”
Theor. Chem. Acc.
132
(
1
),
1291
(
2012
).
22.
A. D.
Kaplan
,
C.
Shahi
,
P.
Bhetwal
,
R. K.
Sah
, and
J. P.
Perdew
, “
Understanding density-driven errors for reaction barrier heights
,”
J. Chem. Theory Comput.
19
(
2
),
532
543
(
2023
).
23.
A.
Veillard
, “
Ab initio calculations of transition-metal organometallics: Structure and molecular properties
,”
Chem. Rev.
91
(
5
),
743
766
(
1991
).
24.
K. R.
Bryenton
,
A. A.
Adeleke
,
S. G.
Dale
, and
E. R.
Johnson
, “
Delocalization error: The greatest outstanding challenge in density-functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
13
,
e1631
(
2022
).
25.
P. a. M.
Dirac
, “
Note on exchange phenomena in the Thomas atom
,”
Math. Proc. Cambridge Philos. Soc.
26
(
3
),
376
385
(
1930
).
26.
O.
Gunnarsson
,
M.
Jonson
, and
B. I.
Lundqvist
, “
Descriptions of exchange and correlation effects in inhomogeneous electron systems
,”
Phys. Rev. B
20
(
8
),
3136
3164
(
1979
).
27.
J. F.
Janak
, “
Proof that δEn = ɛ in density-functional theory
,”
Phys. Rev. B
18
(
12
),
7165
7168
(
1978
).
28.
M. M.
Morrell
,
R. G.
Parr
, and
M.
Levy
, “
Calculation of ionization potentials from density matrices and natural functions, and the long‐range behavior of natural orbitals and electron density
,”
J. Chem. Phys.
62
(
2
),
000549
554
(
2008
).
29.
J.
Wang
,
A. D.
Becke
, and
V. H.
Smith
, “
Evaluation of ⟨S2⟩ in restricted, unrestricted Hartree–Fock, and density functional based theories
,”
J. Chem. Phys.
102
(
8
),
3477
3480
(
1995
).
30.
T. Z. H.
Gani
and
H. J.
Kulik
, “
Unifying exchange sensitivity in transition-metal spin-state ordering and catalysis through bond valence metrics
,”
J. Chem. Theory Comput.
13
(
11
),
5443
5457
(
2017
).
31.
I. G.
Kaplan
, “
Problems in DFT with the total spin and degenerate states
,”
Int. J. Quantum Chem.
107
(
14
),
2595
2603
(
2007
).
32.
C.
Sosa
and
H.
Bernhard Schlegel
, “
Ab initio calculations on the barrier height for the hydrogen addition to ethylene and formaldehyde. The importance of spin projection
,”
Int. J. Quantum Chem.
29
(
4
),
1001
1015
(
1986
).
33.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
(
7
),
5648
5652
(
1993
).
34.
S. M.
Tekarli
,
M. L.
Drummond
,
T. G.
Williams
,
T. R.
Cundari
, and
A. K.
Wilson
, “
Performance of density functional theory for 3d transition metal-containing complexes: Utilization of the correlation consistent basis sets
,”
J. Phys. Chem. A
113
(
30
),
8607
8614
(
2009
).
35.
A. J.
Atkins
,
F.
Talotta
,
L.
Freitag
,
M.
Boggio-Pasqua
, and
L.
González
, “
Assessing excited state energy gaps with time-dependent density functional theory on Ru(II) complexes
,”
J. Chem. Theory Comput.
13
(
9
),
4123
4145
(
2017
).
36.
Y.
Cytter
,
A.
Nandy
,
C.
Duan
, and
H. J.
Kulik
, “
Insights into the deviation from piecewise linearity in transition metal complexes from supervised machine learning models
,”
Phys. Chem. Chem. Phys.
25
(
11
),
8103
8116
(
2023
).
37.
F.
Liu
and
H. J.
Kulik
, “
Impact of approximate DFT density delocalization error on potential energy surfaces in transition metal chemistry
,”
J. Chem. Theory Comput.
16
(
1
),
264
277
(
2020
).
38.
M.
Reiher
,
O.
Salomon
, and
B.
Artur Hess
, “
Reparameterization of hybrid functionals based on energy differences of states of different multiplicity
,”
Theor. Chem. Acc.: Theory, Comput., Model. (Theor. Chim. Acta)
107
(
1
),
48
55
(
2001
).
39.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
(
22
),
9982
9985
(
1996
).
40.
H. S.
Yu
,
S. L.
Li
, and
D. G.
Truhlar
, “
Perspective: Kohn-Sham density functional theory descending a staircase
,”
J. Chem. Phys.
145
(
13
),
130901
(
2016
).
41.
K.
Pierloot
and
S.
Vancoillie
, “
Relative energy of the high-(T2g5) and low-(A1g1) spin states of the ferrous complexes [Fe(L)(NHS4)]: CASPT2 versus density functional theory
,”
J. Chem. Phys.
128
(
3
),
034104
(
2008
).
42.
K. P.
Kepp
, “
Theoretical study of spin crossover in 30 iron complexes
,”
Inorg. Chem.
55
(
6
),
2717
2727
(
2016
).
43.
S.
Song
,
M.-C.
Kim
,
E.
Sim
,
A.
Benali
,
O.
Heinonen
, and
K.
Burke
, “
Benchmarks and reliable DFT results for spin gaps of small ligand Fe(II) complexes
,”
J. Chem. Theory Comput.
14
(
5
),
2304
2311
(
2018
).
44.
L. A.
Mariano
,
B.
Vlaisavljevich
, and
R.
Poloni
, “
Biased spin-state energetics of Fe(II) molecular complexes within density-functional theory and the linear-response hubbard U correction
,”
J. Chem. Theory Comput.
16
(
11
),
6755
6762
(
2020
).
45.
L. A.
Mariano
,
B.
Vlaisavljevich
, and
R.
Poloni
, “
Improved spin-state energy differences of Fe(II) molecular and crystalline complexes via the hubbard U-corrected density
,”
J. Chem. Theory Comput.
17
(
5
),
2807
2816
(
2021
).
46.
A. M.
Köster
,
P.
Calaminici
,
E.
Orgaz
,
D. R.
Roy
,
J. U.
Reveles
, and
S. N.
Khanna
, “
On the ground state of Pd13
,”
J. Am. Chem. Soc.
133
(
31
),
12192
12196
(
2011
).
47.
M. P.
Lourenço
,
L. B.
Herrera
,
J.
Hostaš
,
P.
Calaminici
,
A. M.
Köster
,
A.
Tchagang
, and
D. R.
Salahub
, “
Taking the multiplicity inside the loop: Active learning for structural and spin multiplicity elucidation of atomic clusters
,”
Theor. Chem. Acc.
140
(
8
),
116
(
2021
).
48.
D.
Cruz-Olvera
and
P.
Calaminici
, “
Investigation of structures and energy properties of molybdenum carbide clusters: Insight from theory
,”
Comput. Theor. Chem.
1078
,
55
64
(
2016
).
49.
M.
Juneau
,
M.
Vonglis
,
J.
Hartvigsen
,
L.
Frost
,
D.
Bayerl
,
M.
Dixit
,
G.
Mpourmpakis
,
J. R.
Morse
,
J. W.
Baldwin
,
H. D.
Willauer
, and
M. D.
Porosoff
, “
Assessing the viability of K-Mo2C for reverse water–gas shift scale-up: Molecular to laboratory to pilot scale
,”
Energy Environ. Sci.
13
(
8
),
2524
2539
(
2020
).
50.
X.
Liu
,
J.
Liu
,
Y.
Yang
,
Y.-W.
Li
, and
X.
Wen
, “
Theoretical perspectives on the modulation of carbon on transition-metal catalysts for conversion of carbon-containing resources
,”
ACS Catal.
11
(
4
),
2156
2181
(
2021
).
51.
S.
Upadhyay
and
O. P.
Pandey
, “
Review—Synthesis and electrochemical applications of molybdenum carbide: Recent progress and perspectives
,”
J. Electrochem. Soc.
169
(
1
),
016511
(
2022
).
52.
P. A.
Denis
and
K.
Balasubramanian
, “
Electronic states and potential energy curves of molybdenum carbide and its ions
,”
J. Chem. Phys.
125
(
2
),
024306
(
2006
).
53.
J.
Hostaš
,
A.
Tchagang
,
M. P.
Lourenço
,
A. M.
Köster
, and
D. R.
Salahub
, “
Global optimization of ∼1 Nm MoS2 and CaCO3 nanoparticles
,”
Theor. Chem. Acc.
140
(
4
),
44
(
2021
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
55.
A. M.
Koster
,
G.
Geudtner
,
A.
Alvarez-Ibarra
,
P.
Calaminici
,
M. E.
Casida
,
J.
Carmona-Espindola
,
V. D.
Dominguez
,
R.
Flores-Moreno
,
G. U.
Gamboa
,
A.
Goursot
,
T.
Heine
,
A.
Ipatov
,
A.
de la Lande
,
F.
Janetzko
,
J. M.
del Campo
,
D.
Mejia-Rodriguez
,
J. U.
Reveles
,
J.
Vasquez-Perez
,
A.
Vela
,
B.
Zuniga-Gutierrez
, and
D. R.
Salahub
, DeMon2k (
2018
).
56.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
(
8
),
1200
1211
(
1980
).
57.
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
, “
Generalized gradient approximation for the exchange-correlation hole of a many-electron system
,”
Phys. Rev. B
54
(
23
),
16533
16539
(
1996
).
58.
N.
Godbout
,
D. R.
Salahub
,
J.
Andzelm
, and
E.
Wimmer
, “
Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation
,”
Can. J. Chem.
70
(
2
),
560
571
(
1992
).
59.
C. C.
Lovallo
and
M.
Klobukowski
, “
Development of new pseudopotential methods: Improved model core potentials for the first-row transition metals
,”
J. Comput. Chem.
24
(
9
),
1009
1015
(
2003
).
60.
D.
Mejía-Rodríguez
and
A. M.
Köster
, “
Robust and efficient variational fitting of Fock exchange
,”
J. Chem. Phys.
141
(
12
),
124114
(
2014
).
61.
A. M.
Köster
,
J. U.
Reveles
, and
J. M.
del Campo
, “
Calculation of exchange-correlation potentials with auxiliary function densities
,”
J. Chem. Phys.
121
(
8
),
3417
3424
(
2004
).
62.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
(
13
),
6158
6170
(
1999
).
63.
T.
Tsuchimochi
and
G. E.
Scuseria
, “
Communication: ROHF theory made simple
,”
J. Chem. Phys.
133
(
14
),
141102
(
2010
).
64.
M. F.
Guest
and
V. R.
Saunders
, “
On methods for converging open-shell Hartree-Fock wave-functions
,”
Mol. Phys.
28
(
3
),
819
828
(
1974
).
65.
M. M.
Quintal
,
A.
Karton
,
M. A.
Iron
,
A. D.
Boese
, and
J. M. L.
Martin
, “
Benchmark study of DFT functionals for late-transition-metal reactions
,”
J. Phys. Chem. A
110
(
2
),
709
716
(
2006
).
66.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
, “
The ORCA quantum chemistry program package
,”
J. Chem. Phys.
152
(
22
),
224108
(
2020
).
67.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
, “
Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials
,”
Theor. Chem. Acc.: Theory, Comput., Model. (Theor. Chim. Acta)
97
(
1-4
),
119
124
(
1997
).
68.
N. M.
O’Boyle
,
M.
Banck
,
C. A.
James
,
C.
Morley
,
T.
Vandermeersch
, and
G. R.
Hutchison
, “
Open babel: An open chemical toolbox
,”
J. Cheminf.
3
(
1
),
33
(
2011
).
69.
W.
McKinney
, “
Data structures for statistical computing in Python
,” in
Proceedings of the 9th Python in Science Conference
,
Austin, TX
,
2010
, Vol.
445
, pp.
51
56
.
70.
M. P.
Lourenço
,
B. R. L.
Galvão
,
L.
Barrios Herrera
,
J.
Hostaš
,
A.
Tchagang
,
M. X.
Silva
, and
D. R.
Salahub
, “
A new active learning approach for global optimization of atomic clusters
,”
Theor. Chem. Acc.
140
(
6
),
62
(
2021
).
71.
R. F. W.
Bader
,
Atoms in Molecules: A Quantum Theory, International Series of Monographs on Chemistry
(
Oxford University Press
,
Oxford, NY
,
1994
).
72.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chim. Acta
44
,
129
(
1977
).
73.
P.
Bultinck
,
C.
Van Alsenoy
,
P. W.
Ayers
, and
R.
Carbó-Dorca
, “
Critical analysis and extension of the hirshfeld atoms in molecules
,”
J. Chem. Phys.
126
(
14
),
144111
(
2007
).
74.
A.
de la Lande
,
C.
Clavaguéra
, and
A.
Köster
, “
On the accuracy of population analyses based on fitted densities#
,”
J. Mol. Model.
23
(
4
),
99
(
2017
).
75.
A. S.
Menon
and
L.
Radom
, “
Consequences of spin contamination in unrestricted calculations on open-shell species: Effect of Hartree−Fock and Møller−Plesset contributions in hybrid and double-hybrid density functional theory approaches
,”
J. Phys. Chem. A
112
(
50
),
13225
13230
(
2008
).
Published under a nonexclusive license by AIP Publishing.

Supplementary Material

You do not currently have access to this content.