The dynamics of delocalized excitons in light-harvesting complexes (LHCs) can be investigated using different experimental techniques, and transient absorption (TA) spectroscopy is one of the most valuable methods for this purpose. A careful interpretation of TA spectra is essential for the clarification of excitation energy transfer (EET) processes occurring during light-harvesting. However, even in the simplest LHCs, a physical model is needed to interpret transient spectra as the number of EET processes occurring at the same time is very large to be disentangled from measurements alone. Physical EET models are commonly built by fittings of the microscopic exciton Hamiltonians and exciton-vibrational parameters, an approach that can lead to biases. Here, we present a first-principles strategy to simulate EET and transient absorption spectra in LHCs, combining molecular dynamics and accurate multiscale quantum chemical calculations to obtain an independent estimate of the excitonic structure of the complex. The microscopic parameters thus obtained are then used in EET simulations to obtain the population dynamics and the related spectroscopic signature. We apply this approach to the CP29 minor antenna complex of plants for which we follow the EET dynamics and transient spectra after excitation in the chlorophyll b region. Our calculations reproduce all the main features observed in the transient absorption spectra and provide independent insight on the excited-state dynamics of CP29. The approach presented here lays the groundwork for the accurate simulation of EET and unbiased interpretation of transient spectra in multichromophoric systems.

1.
T.
Mirkovic
,
E. E.
Ostroumov
,
J. M.
Anna
,
R.
van Grondelle
,
Govindjee
, and
G. D.
Scholes
, “
Light absorption and energy transfer in the antenna complexes of photosynthetic organisms
,”
Chem. Rev.
117
,
249
293
(
2017
).
2.
G. D.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R.
van Grondelle
, “
Lessons from nature about solar light harvesting
,”
Nat. Chem.
3
,
763
774
(
2011
).
3.
R.
Croce
and
H.
van Amerongen
, “
Natural strategies for photosynthetic light harvesting
,”
Nat. Chem. Biol.
10
,
492
501
(
2014
).
4.
M.
Ballottari
,
J.
Girardon
,
L.
Dall’Osto
, and
R.
Bassi
, “
Evolution and functional properties of Photosystem II light harvesting complexes in eukaryotes
,”
Biochim. Biophys. Acta, Bioenerg.
1817
,
143
157
(
2012
).
5.
R.
Berera
,
R.
van Grondelle
, and
J. T. M.
Kennis
, “
Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems
,”
Photosynth. Res.
101
,
105
118
(
2009
).
6.
P. H.
Lambrev
,
P.
Akhtar
, and
H. S.
Tan
, “
Insights into the mechanisms and dynamics of energy transfer in plant light-harvesting complexes from two-dimensional electronic spectroscopy
,”
Biochim. Biophys. Acta, Bioenerg.
1861
,
148050
(
2020
).
7.
O. C.
Fiebig
,
D.
Harris
,
D.
Wang
,
M. P.
Hoffmann
, and
G. S.
Schlau-Cohen
, “
Ultrafast dynamics of photosynthetic light harvesting: Strategies for acclimation across organisms
,”
Annu. Rev. Phys. Chem.
74
,
493
520
(
2023
).
8.
Y.-C.
Cheng
and
G. R.
Fleming
, “
Dynamics of light harvesting in photosynthesis
,”
Annu. Rev. Phys. Chem.
60
,
241
262
(
2009
).
9.
V. I.
Novoderezhkin
,
M. A.
Palacios
,
H.
van Amerongen
, and
R.
van Grondelle
, “
Energy-transfer dynamics in the LHCII complex of higher plants: Modified Redfield approach
,”
J. Phys. Chem. B
108
,
10363
10375
(
2004
).
10.
V. I.
Novoderezhkin
,
M. A.
Palacios
,
H.
van Amerongen
, and
R.
van Grondelle
, “
Excitation dynamics in the LHCII complex of higher plants: Modeling based on the 2.72 Å crystal structure
,”
J. Phys. Chem. B
109
,
10493
10504
(
2005
).
11.
V. I.
Novoderezhkin
,
A. B.
Doust
,
C.
Curutchet
,
G. D.
Scholes
, and
R.
van Grondelle
, “
Excitation dynamics in phycoerythrin 545: Modeling of steady-state spectra and transient absorption with modified Redfield theory
,”
Biophys. J.
99
,
344
352
(
2010
).
12.
V.
Novoderezhkin
,
A.
Marin
, and
R.
van Grondelle
, “
Intra- and inter-monomeric transfers in the light harvesting LHCII complex: The Redfield–Förster picture
,”
Phys. Chem. Chem. Phys.
13
,
17093
17103
(
2011
).
13.
N.
Liguori
,
V.
Novoderezhkin
,
L. M.
Roy
,
R.
Van Grondelle
, and
R.
Croce
, “
Excitation dynamics and structural implication of the stress-related complex LHCSR3 from the green alga Chlamydomonas reinhardtii
,”
Biochim. Biophys. Acta, Bioenerg.
1857
,
1514
1523
(
2016
).
14.
V. I.
Novoderezhkin
and
R.
Croce
, “
The location of the low-energy states in Lhca1 favors excitation energy transfer to the core in the plant PSI-LHCI supercomplex
,”
Photosynth. Res.
156
,
59
74
(
2023
).
15.
M.
Jassas
,
J.
Chen
,
A.
Khmelnitskiy
,
A. P.
Casazza
,
S.
Santabarbara
, and
R.
Jankowiak
, “
Structure-based exciton Hamiltonian and dynamics for the reconstituted wild-type CP29 protein antenna complex of the photosystem II
,”
J. Phys. Chem. B
122
,
4611
4624
(
2018
).
16.
F.
Müh
,
M. E.-A.
Madjet
, and
T.
Renger
, “
Structure-based identification of energy sinks in plant light-harvesting complex II
,”
J. Phys. Chem. B
114
,
13517
13535
(
2010
).
17.
V. I.
Novoderezhkin
and
R.
van Grondelle
, “
Physical origins and models of energy transfer in photosynthetic light-harvesting
,”
Phys. Chem. Chem. Phys.
12
,
7352
(
2010
).
18.
T.
Renger
and
F.
Müh
, “
Understanding photosynthetic light-harvesting: A bottom up theoretical approach
,”
Phys. Chem. Chem. Phys.
15
,
3348
(
2013
).
19.
C.
Olbrich
,
T. L. C.
Jansen
,
J.
Liebers
,
M.
Aghtar
,
J.
Strümpfer
,
K.
Schulten
,
J.
Knoester
, and
U.
Kleinekathöfer
, “
From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex
,”
J. Phys. Chem. B
115
,
8609
8621
(
2011
).
20.
T.
Renger
,
M. E.-A.
Madjet
,
M.
Schmidt am Busch
,
J.
Adolphs
, and
F.
Müh
, “
Structure-based modeling of energy transfer in photosynthesis
,”
Photosynth. Res.
116
,
367
388
(
2013
).
21.
S.
Maity
and
U.
Kleinekathöfer
, “
Recent progress in atomistic modeling of light-harvesting complexes: A mini review
,”
Photosynth. Res.
156
,
147
162
(
2023
).
22.
C.
Curutchet
and
B.
Mennucci
, “
Quantum chemical studies of light harvesting
,”
Chem. Rev.
117
,
294
343
(
2017
).
23.
F.
Segatta
,
L.
Cupellini
,
M.
Garavelli
, and
B.
Mennucci
, “
Quantum chemical modeling of the photoinduced activity of multichromophoric biosystems
,”
Chem. Rev.
119
,
9361
9380
(
2019
).
24.
L.
Cupellini
,
M.
Bondanza
,
M.
Nottoli
, and
B.
Mennucci
, “
Successes and challenges in the atomistic modeling of light-harvesting and its photoregulation
,”
Biochim. Biophys. Acta, Bioenerg.
1861
,
148049
(
2020
).
25.
E.
Cignoni
,
V.
Slama
,
L.
Cupellini
, and
B.
Mennucci
, “
The atomistic modeling of light-harvesting complexes from the physical models to the computational protocol
,”
J. Chem. Phys.
156
,
120901
(
2022
).
26.
V.
Sláma
,
L.
Cupellini
, and
B.
Mennucci
, “
Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description
,”
Phys. Chem. Chem. Phys.
22
,
16783
16795
(
2020
).
27.
F.
Cardoso Ramos
,
M.
Nottoli
,
L.
Cupellini
, and
B.
Mennucci
, “
The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling
,”
Chem. Sci.
10
,
9650
9662
(
2019
).
28.
I.
Guarnetti Prandi
,
V.
Sláma
,
C.
Pecorilla
,
L.
Cupellini
, and
B.
Mennucci
, “
Structure of the stress-related LHCSR1 complex determined by an integrated computational strategy
,”
Commun. Biol.
5
,
145
(
2022
).
29.
L.
Cupellini
,
P.
Qian
,
T. C.
Nguyen-Phan
,
A. T.
Gardiner
, and
R. J.
Cogdell
, “
Quantum chemical elucidation of a sevenfold symmetric bacterial antenna complex
,”
Photosynth. Res.
156
,
75
87
(
2022
).
30.
M.
Bondanza
,
M.
Nottoli
,
L.
Cupellini
,
F.
Lipparini
, and
B.
Mennucci
, “
Polarizable embedding QM/MM: The future gold standard for complex (bio)systems?
,”
Phys. Chem. Chem. Phys.
22
,
14433
14448
(
2020
).
31.
F.
Segatta
,
L.
Cupellini
,
S.
Jurinovich
,
S.
Mukamel
,
M.
Dapor
,
S.
Taioli
,
M.
Garavelli
, and
B.
Mennucci
, “
A quantum chemical interpretation of two-dimensional electronic spectroscopy of light-harvesting complexes
,”
J. Am. Chem. Soc.
139
,
7558
7567
(
2017
).
32.
X.
Pan
,
M.
Li
,
T.
Wan
,
L.
Wang
,
C.
Jia
,
Z.
Hou
,
X.
Zhao
,
J.
Zhang
, and
W.
Chang
, “
Structural insights into energy regulation of light-harvesting complex CP29 from spinach
,”
Nat. Struct. Mol. Biol.
18
,
309
315
(
2011
).
33.
X.
Pan
,
Z.
Liu
,
M.
Li
, and
W.
Chang
, “
Architecture and function of plant light-harvesting complexes II
,”
Curr. Opin. Struct. Biol.
23
,
515
525
(
2013
).
34.
X.
Wei
,
X.
Su
,
P.
Cao
,
X.
Liu
,
W.
Chang
,
M.
Li
,
X.
Zhang
, and
Z.
Liu
, “
Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution
,”
Nature
534
,
69
74
(
2016
).
35.
X.
Su
,
J.
Ma
,
X.
Wei
,
P.
Cao
,
D.
Zhu
,
W.
Chang
,
Z.
Liu
,
X.
Zhang
, and
M.
Li
, “
Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex
,”
Science
357
,
815
820
(
2017
).
36.
F.
Müh
,
D.
Lindorfer
,
M.
Schmidt am Busch
, and
T.
Renger
, “
Towards a structure-based exciton Hamiltonian for the CP29 antenna of photosystem II
,”
Phys. Chem. Chem. Phys.
16
,
11848
11863
(
2014
).
37.
K. F.
Fox
,
C.
Ünlü
,
V.
Balevičius
,
B. N.
Ramdour
,
C.
Kern
,
X.
Pan
,
M.
Li
,
H.
van Amerongen
, and
C. D.
Duffy
, “
A possible molecular basis for photoprotection in the minor antenna proteins of plants
,”
Biochim. Biophys. Acta, Bioenerg.
1859
,
471
481
(
2018
).
38.
V.
Mascoli
,
V.
Novoderezhkin
,
N.
Liguori
,
P.
Xu
, and
R.
Croce
, “
Design principles of solar light harvesting in plants: Functional architecture of the monomeric antenna CP29
,”
Biochim. Biophys. Acta, Bioenerg.
1861
,
148156
(
2020
).
39.
M.
Lapillo
,
E.
Cignoni
,
L.
Cupellini
, and
B.
Mennucci
, “
The energy transfer model of nonphotochemical quenching: Lessons from the minor CP29 antenna complex of plants
,”
Biochim. Biophys. Acta, Bioenerg.
1861
,
148282
(
2020
).
40.
S.
Sardar
,
R.
Caferri
,
F. V. A.
Camargo
,
J.
Pamos Serrano
,
A.
Ghezzi
,
S.
Capaldi
,
L.
Dall’Osto
,
R.
Bassi
,
C.
D’Andrea
, and
G.
Cerullo
, “
Molecular mechanisms of light harvesting in the minor antenna CP29 in near-native membrane lipidic environment
,”
J. Chem. Phys.
156
,
205101
(
2022
).
41.
G.
Raszewski
,
W.
Saenger
, and
T.
Renger
, “
Theory of optical spectra of photosystem II reaction centers: Location of the triplet state and the identity of the primary electron donor
,”
Biophys. J.
88
,
986
998
(
2005
).
42.
J.
Ma
and
J.
Cao
, “
Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement
,”
J. Chem. Phys.
142
,
094106
(
2015
).
43.
L.
Cupellini
,
F.
Lipparini
, and
J.
Cao
, “
Absorption and circular dichroism spectra of molecular aggregates with the full cumulant expansion
,”
J. Phys. Chem. B
124
,
8610
8617
(
2020
).
44.
J. A.
Nöthling
,
T.
Mančal
, and
T. P. J.
Krüger
, “
Accuracy of approximate methods for the calculation of absorption-type linear spectra with a complex system–bath coupling
,”
J. Chem. Phys.
157
,
095103
(
2022
).
45.
A.
Gelzinis
,
D.
Abramavicius
, and
L.
Valkunas
, “
Absorption lineshapes of molecular aggregates revisited
,”
J. Chem. Phys.
142
,
154107
(
2015
).
46.
T.
Renger
and
R. A.
Marcus
, “
On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra
,”
J. Chem. Phys.
116
,
9997
10019
(
2002
).
47.
D.
Abramavicius
,
B.
Palmieri
,
D. V.
Voronine
,
F.
Šanda
, and
S.
Mukamel
, “
Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives
,”
Chem. Rev.
109
,
2350
2408
(
2009
).
48.
L.
Ress
,
P.
Malý
,
J. B.
Landgraf
,
D.
Lindorfer
,
M.
Hofer
,
J.
Selby
,
C.
Lambert
,
T.
Renger
, and
T.
Brixner
, “
Time-resolved circular dichroism of excitonic systems: Theory and experiment on an exemplary squaraine polymer
,”
Chem. Sci.
14
,
9328
(
2023
).
49.
J.
Adolphs
and
T.
Renger
, “
How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria
,”
Biophys. J.
91
,
2778
(
2006
).
50.
O.
Rancova
,
R.
Jankowiak
, and
D.
Abramavicius
, “
Role of bath fluctuations in the double-excitation manifold in shaping the 2DES of bacterial reaction centers at low temperature
,”
J. Phys. Chem. B
122
,
1348
1366
(
2018
).
51.
M.
Yang
,
A.
Damjanović
,
H. M.
Vaswani
, and
G. R.
Fleming
, “
Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density
,”
Biophys. J.
85
,
140
158
(
2003
).
52.
H.
Sumi
, “
Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis
,”
J. Phys. Chem. B
103
,
252
260
(
1999
).
53.
G. D.
Scholes
,
X. J.
Jordanides
, and
G. R.
Fleming
, “
Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies
,”
J. Phys. Chem. B
105
,
1640
1651
(
2001
).
54.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
, “
Multichromophoric Förster resonance energy transfer
,”
Phys. Rev. Lett.
92
,
218301
(
2004
).
55.
A.
Klinger
,
D.
Lindorfer
,
F.
Müh
, and
T.
Renger
, “
Normal mode analysis of spectral density of FMO trimers: Intra- and intermonomer energy transfer
,”
J. Chem. Phys.
153
,
215103
(
2020
).
56.
Z.
Guardini
,
M.
Bressan
,
R.
Caferri
,
R.
Bassi
, and
L.
Dall’Osto
, “
Identification of a pigment cluster catalysing fast photoprotective quenching response in CP29
,”
Nat. Plants
6
,
303
313
(
2020
).
57.
C.
Curutchet
,
A.
Muñoz Losa
,
S.
Monti
,
J.
Kongsted
,
G. D.
Scholes
, and
B.
Mennucci
, “
Electronic energy transfer in condensed phase studied by a polarizable QM/MM model
,”
J. Chem. Theory Comput.
5
,
1838
1848
(
2009
).
58.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16, Revision C.01
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
59.
J.
Wang
,
P.
Cieplak
,
J.
Li
,
T.
Hou
,
R.
Luo
, and
Y.
Duan
, “
Development of polarizable models for molecular mechanical calculations I: Parameterization of atomic polarizability
,”
J. Phys. Chem. B
115
,
3091
3099
(
2011
).
60.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
,
Oxford Series in Optical and Imaging Sciences
(
Oxford University Press
,
1995
).
61.
M. K.
Lee
,
P.
Huo
, and
D. F.
Coker
, “
Semiclassical path integral dynamics: Photosynthetic energy transfer with realistic environment interactions
,”
Annu. Rev. Phys. Chem.
67
,
639
668
(
2016
).
62.
S.
Maity
,
P.
Sarngadharan
,
V.
Daskalakis
, and
U.
Kleinekathöfer
, “
Time-dependent atomistic simulations of the CP29 light-harvesting complex
,”
J. Chem. Phys.
155
,
055103
(
2021
).
63.
S.
Jurinovich
,
L.
Viani
,
I. G.
Prandi
,
T.
Renger
, and
B.
Mennucci
, “
Towards an ab initio description of the optical spectra of light-harvesting antennae: Application to the CP29 complex of photosystem II
,”
Phys. Chem. Chem. Phys.
17
,
14405
14416
(
2015
).
64.
S.
Petry
,
J. C.
Tremblay
, and
J. P.
Götze
, “
Impact of structure, coupling scheme, and state of interest on the energy transfer in CP29
,”
J. Phys. Chem. B
127
, 7207–7219 (2023).
65.
A.
Pascal
,
C.
Gradinaru
,
U.
Wacker
,
E.
Peterman
,
F.
Calkoen
,
K.-D.
Irrgang
,
P.
Horton
,
G.
Renger
,
R.
van Grondelle
,
B.
Robert
, and
H.
van Amerongen
, “
Spectroscopic characterization of the spinach Lhcb4 protein (CP29), a minor light-harvesting complex of photosystem II
,”
Eur. J. Biochem.
262
,
817
823
(
1999
).
66.
D.
Lindorfer
,
F.
Müh
, and
T.
Renger
, “
Origin of non-conservative circular dichroism of the CP29 antenna complex of photosystem II
,”
Phys. Chem. Chem. Phys.
19
,
7524
7536
(
2017
).
67.
A.
Gelzinis
and
L.
Valkunas
, “
Analytical derivation of equilibrium state for open quantum system
,”
J. Chem. Phys.
152
,
051103
(
2020
).
68.
T.-C.
Dinh
and
T.
Renger
, “
Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions
,”
J. Chem. Phys.
142
,
034104
(
2015
).
69.
A. G.
Dijkstra
,
T.
la Cour Jansen
, and
J.
Knoester
, “
Localization and coherent dynamics of excitons in the two-dimensional optical spectrum of molecular J-aggregates
,”
J. Chem. Phys.
128
,
164511
(
2008
).
70.
A.
Gelzinis
,
D.
Abramavicius
, and
L.
Valkunas
, “
Non-Markovian effects in time-resolved fluorescence spectrum of molecular aggregates: Tracing polaron formation
,”
Phys. Rev. B
84
,
245430
(
2011
).
71.
J. M.
Moix
,
Y.
Zhao
, and
J.
Cao
, “
Equilibrium-reduced density matrix formulation: Influence of noise, disorder, and temperature on localization in excitonic systems
,”
Phys. Rev. B
85
,
115412
(
2012
).
72.
Y.
Yan
,
Y.
Liu
,
T.
Xing
, and
Q.
Shi
, “
Theoretical study of excitation energy transfer and nonlinear spectroscopy of photosynthetic light-harvesting complexes using the nonperturbative reduced dynamics method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1498
(
2020
).
73.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
74.
S.
Kundu
and
N.
Makri
, “
Intramolecular vibrations in excitation energy transfer: Insights from real-time path integral calculations
,”
Annu. Rev. Phys. Chem.
73
,
349
375
(
2022
).
75.
T. P.
Fay
and
D. T.
Limmer
, “
Coupled charge and energy transfer dynamics in light harvesting complexes from a hybrid hierarchical equations of motion approach
,”
J. Chem. Phys.
157
,
174104
(
2022
).
76.
J. H.
Fetherolf
and
T. C.
Berkelbach
, “
Linear and nonlinear spectroscopy from quantum master equations
,”
J. Chem. Phys.
147
,
244109
(
2017
).
77.
Y.
Shibata
,
S.
Nishi
,
K.
Kawakami
,
J.-R.
Shen
, and
T.
Renger
, “
Photosystem II does not possess a simple excitation energy funnel: Time-resolved fluorescence spectroscopy meets theory
,”
J. Am. Chem. Soc.
135
,
6903
6914
(
2013
).

Supplementary Material

You do not currently have access to this content.