Coarse-grained (CG) interactions determined via bottom-up methodologies can faithfully reproduce the structural correlations observed in fine-grained (atomistic resolution) systems, yet they can suffer from limited extensibility due to complex many-body correlations. As part of an ongoing effort to understand and improve the applicability of bottom-up CG models, we propose an alternative approach to address both accuracy and transferability. Our main idea draws from classical perturbation theory to partition the hard sphere repulsive term from effective CG interactions. We then introduce Gaussian basis functions corresponding to the system’s characteristic length by linking these Gaussian sub-interactions to the local particle densities at each coordination shell. The remaining perturbative long-range interaction can be treated as a collective solvation interaction, which we show exhibits a Gaussian form derived from integral equation theories. By applying this numerical parametrization protocol to CG liquid systems, our microscopic theory elucidates the emergence of Gaussian interactions in common phenomenological CG models. To facilitate transferability for these reduced descriptions, we further infer equations of state to determine the sub-interaction parameter as a function of the system variables. The reduced models exhibit excellent transferability across the thermodynamic state points. Furthermore, we propose a new strategy to design the cross-interactions between distinct CG sites in liquid mixtures. This involves combining each Gaussian in the proper radial domain, yielding accurate CG potentials of mean force and structural correlations for multi-component systems. Overall, our findings establish a solid foundation for constructing transferable bottom-up CG models of liquids with enhanced extensibility.

2.
H. A.
Scheraga
,
M.
Khalili
, and
A.
Liwo
,
Annu. Rev. Phys. Chem.
58
,
57
83
(
2007
).
3.
G. A.
Voth
,
Coarse-Graining of Condensed Phase and Biomolecular Systems
(
CRC Press
,
2008
).
4.
C.
Peter
and
K.
Kremer
,
Soft Matter
5
(
22
),
4357
4366
(
2009
).
5.
T.
Murtola
,
A.
Bunker
,
I.
Vattulainen
,
M.
Deserno
, and
M.
Karttunen
,
Phys. Chem. Chem. Phys.
11
(
12
),
1869
1892
(
2009
).
6.
S.
Riniker
and
W. F.
van Gunsteren
,
J. Chem. Phys.
134
(
8
),
084110
(
2011
).
7.
W. G.
Noid
,
J. Chem. Phys.
139
(
9
),
090901
(
2013
).
8.
M. G.
Saunders
and
G. A.
Voth
,
Annu. Rev. Biophys.
42
,
73
93
(
2013
).
9.
A. J.
Pak
and
G. A.
Voth
,
Curr. Opin. Struct. Biol.
52
,
119
126
(
2018
).
10.
J.
Jin
,
A. J.
Pak
,
A. E.
Durumeric
,
T. D.
Loose
, and
G. A.
Voth
,
J. Chem. Theory Comput.
18
(
10
),
5759
5791
(
2022
).
11.
W.
Noid
,
J. Phys. Chem. B
127
(
19
),
4174
4207
(
2023
).
12.
J. M.
Grime
and
G. A.
Voth
,
Biophys. J.
103
(
8
),
1774
1783
(
2012
).
13.
J. M.
Grime
,
J. F.
Dama
,
B. K.
Ganser-Pornillos
,
C. L.
Woodward
,
G. J.
Jensen
,
M.
Yeager
, and
G. A.
Voth
,
Nat. Commun.
7
(
1
),
11568
(
2016
).
14.
A. J.
Pak
,
J. M.
Grime
,
P.
Sengupta
,
A. K.
Chen
,
A. E.
Durumeric
,
A.
Srivastava
,
M.
Yeager
,
J. A.
Briggs
,
J.
Lippincott-Schwartz
, and
G. A.
Voth
,
Proc. Natl. Acad. Sci. U. S. A.
114
(
47
),
E10056
E10065
(
2017
).
15.
A. J.
Pak
,
J. M.
Grime
,
A.
Yu
, and
G. A.
Voth
,
J. Am. Chem. Soc.
141
(
26
),
10214
10224
(
2019
).
16.
A.
Yu
,
K. A.
Skorupka
,
A. J.
Pak
,
B. K.
Ganser-Pornillos
,
O.
Pornillos
, and
G. A.
Voth
,
Nat. Commun.
11
(
1
),
1307
(
2020
).
17.
A.
Yu
,
E. M.
Lee
,
J.
Jin
, and
G. A.
Voth
,
Sci. Adv.
6
(
38
),
eabc6465
(
2020
).
18.
M.
Gupta
,
A. J.
Pak
, and
G. A.
Voth
,
Sci. Adv.
9
(
1
),
eadd7434
(
2023
).
19.
W. G.
Noid
,
Methods Mol. Biol.
924
,
487
531
(
2013
).
20.
M. S.
Shell
, in
Advances in Chemical Physics
, edited by
S. A.
Rice
and
A. R.
Kinner
(
John Wiley & Sons
, Inc.,
2016
), Vol.
161
, pp.
395
441
.
21.
J. W.
Wagner
,
J. F.
Dama
,
A. E.
Durumeric
, and
G. A.
Voth
,
J. Chem. Phys.
145
(
4
),
044108
(
2016
).
22.
N. J. H.
Dunn
,
T. T.
Foley
, and
W. G.
Noid
,
Acc. Chem. Res.
49
(
12
),
2832
2840
(
2016
).
23.
T. D.
Potter
,
J.
Tasche
, and
M. R.
Wilson
,
Phys. Chem. Chem. Phys.
21
(
4
),
1912
1927
(
2019
).
24.
V.
Krishna
,
W. G.
Noid
, and
G. A.
Voth
,
J. Chem. Phys.
131
(
2
),
024103
(
2009
).
25.
L.
Lu
and
G. A.
Voth
,
J. Chem. Phys.
134
(
22
),
224107
(
2011
).
26.
J.
Jin
,
A. J.
Pak
, and
G. A.
Voth
,
J. Phys. Chem. Lett.
10
(
16
),
4549
4557
(
2019
).
27.
N. J. H.
Dunn
and
W. G.
Noid
,
J. Chem. Phys.
143
(
24
),
243148
(
2015
).
28.
M. R.
DeLyser
and
W. G.
Noid
,
J. Chem. Phys.
147
(
13
),
134111
(
2017
).
29.
J.
Jin
,
A.
Yu
, and
G. A.
Voth
,
J. Chem. Theory Comput.
16
(
11
),
6823
6842
(
2020
).
30.
K.
Shen
,
N.
Sherck
,
M.
Nguyen
,
B.
Yoo
,
S.
Köhler
,
J.
Speros
,
K. T.
Delaney
,
G. H.
Fredrickson
, and
M. S.
Shell
,
J. Chem. Phys.
153
(
15
),
154116
(
2020
).
31.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
(
7
),
2469
2473
(
2005
).
32.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
, and
G. A.
Voth
,
J. Phys. Chem. B
111
(
16
),
4116
4127
(
2007
).
33.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
,
J. Chem. Phys.
128
(
24
),
244114
(
2008
).
34.
T. T.
Foley
,
M. S.
Shell
, and
W. G.
Noid
,
J. Chem. Phys.
143
(
24
),
243104
(
2015
).
35.
P. A.
Golubkov
,
J. C.
Wu
, and
P.
Ren
,
Phys. Chem. Chem. Phys.
10
(
15
),
2050
2057
(
2008
).
36.
P.
Carbone
,
H. A. K.
Varzaneh
,
X.
Chen
, and
F.
Müller-Plathe
,
J. Chem. Phys.
128
(
6
),
064904
(
2008
).
37.
J. W.
Mullinax
and
W. G.
Noid
,
J. Chem. Phys.
131
(
10
),
104110
(
2009
).
38.
E.
Brini
and
N.
Van der Vegt
,
J. Chem. Phys.
137
(
15
),
154113
(
2012
).
39.
C.
Dalgicdir
,
O.
Sensoy
,
C.
Peter
, and
M.
Sayar
,
J. Chem. Phys.
139
(
23
),
234115
(
2013
).
40.
P.
Kar
,
S. M.
Gopal
,
Y.-M.
Cheng
,
A.
Predeus
, and
M.
Feig
,
J. Chem. Theory Comput.
9
(
8
),
3769
3788
(
2013
).
41.
P.
Kar
and
M.
Feig
,
Advances in Protein Chemistry and Structural Biology
(
Elsevier
,
2014
), Vol.
96
, pp.
143
180
.
42.
D. D.
Hsu
,
W.
Xia
,
S. G.
Arturo
, and
S.
Keten
,
Macromolecules
48
(
9
),
3057
3068
(
2015
).
43.
V.
Agrawal
,
P.
Peralta
,
Y.
Li
, and
J.
Oswald
,
J. Chem. Phys.
145
(
10
),
104903
(
2016
).
44.
N. J. H.
Dunn
and
W. G.
Noid
,
J. Chem. Phys.
144
(
20
),
204124
(
2016
).
45.
J. F.
Dama
,
J.
Jin
, and
G. A.
Voth
,
J. Chem. Theory Comput.
13
(
3
),
1010
1022
(
2017
).
46.
T.
Sanyal
and
M. S.
Shell
,
J. Phys. Chem. B
122
(
21
),
5678
5693
(
2018
).
47.
J.
Jin
and
G. A.
Voth
,
J. Chem. Theory Comput.
14
(
4
),
2180
2197
(
2018
).
48.
D.
Rosenberger
,
T.
Sanyal
,
M. S.
Shell
, and
N. F.
van der Vegt
,
J. Chem. Theory Comput.
15
(
5
),
2881
2895
(
2019
).
49.
K. H.
Kanekal
,
J. F.
Rudzinski
, and
T.
Bereau
,
J. Chem. Phys.
157
(
10
),
104102
(
2022
).
50.
E.
Pretti
and
M. S.
Shell
,
J. Chem. Phys.
155
(
9
),
094102
(
2021
).
51.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
123
(
13
),
134105
(
2005
).
52.
W. G.
Noid
,
P.
Liu
,
Y.
Wang
,
J.-W.
Chu
,
G. S.
Ayton
,
S.
Izvekov
,
H. C.
Andersen
, and
G. A.
Voth
,
J. Chem. Phys.
128
(
24
),
244115
(
2008
).
53.
L.
Lu
,
S.
Izvekov
,
A.
Das
,
H. C.
Andersen
, and
G. A.
Voth
,
J. Chem. Theory Comput.
6
(
3
),
954
965
(
2010
).
54.
M. S.
Shell
,
J. Chem. Phys.
129
(
14
),
144108
(
2008
).
55.
A.
Chaimovich
and
M. S.
Shell
,
Phys. Rev. E
81
(
6
),
060104
(
2010
).
56.
A.
Chaimovich
and
M. S.
Shell
,
J. Chem. Phys.
134
(
9
),
094112
(
2011
).
57.
R. W.
Zwanzig
,
J. Chem. Phys.
22
(
8
),
1420
1426
(
1954
).
58.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
(
8
),
2856
2861
(
1967
).
59.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
(
11
),
4714
4721
(
1967
).
60.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
(
12
),
5237
5247
(
1971
).
61.
H. C.
Andersen
,
J. D.
Weeks
, and
D.
Chandler
,
Phys. Rev. A
4
(
4
),
1597
(
1971
).
62.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
55
(
11
),
5422
5423
(
1971
).
63.
J.
Jin
,
K. S.
Schweizer
, and
G. A.
Voth
,
J. Chem. Phys.
158
(
3
),
034103
(
2023
).
64.
J.
Jin
,
K. S.
Schweizer
, and
G. A.
Voth
,
J. Chem. Phys.
158
(
3
),
034104
(
2023
).
65.
J.
Jin
,
E. K.
Lee
, and
G. A.
Voth
,
J. Chem. Phys.
159
(
3
),
164102
(
2023
).
66.
67.
K. S.
Schweizer
,
J. Chem. Phys.
91
(
9
),
5802
5821
(
1989
).
68.
E.
Kierlik
and
M.
Rosinberg
,
Phys. Rev. A
42
(
6
),
3382
(
1990
).
69.
J. F.
Lutsko
,
J. Chem. Phys.
127
(
5
),
054701
(
2007
).
70.
I.
Pagonabarraga
and
D.
Frenkel
,
J. Chem. Phys.
115
(
11
),
5015
5026
(
2001
).
71.
72.
G. V.
Efimov
and
G.
Ganbold
,
Phys. Status Solidi B
168
,
165
(
1991
).
73.
G. V.
Efimov
and
E. A.
Nogovitsin
,
Physica A
234
(
1-2
),
506
522
(
1996
).
74.
S. A.
Baeurle
,
R.
Martoňák
, and
M.
Parrinello
,
J. Chem. Phys.
117
(
7
),
3027
3039
(
2002
).
75.
S. A.
Baeurle
,
Phys. Rev. Lett.
89
(
8
),
080602
(
2002
).
76.
S. A.
Baeurle
,
G. V.
Efimov
, and
E. A.
Nogovitsin
,
J. Chem. Phys.
124
(
22
),
224110
(
2006
).
77.
F. H.
Stillinger
,
J. Chem. Phys.
65
(
10
),
3968
3974
(
1976
).
78.
H.
Löwen
,
J. Phys.: Condens. Matter
14
(
46
),
11897
(
2002
).
79.
G.
Rickayzen
and
D.
Heyes
,
J. Chem. Phys.
138
(
8
),
084509
(
2013
).
80.
F. H.
Stillinger
and
T. A.
Weber
,
J. Chem. Phys.
68
(
8
),
3837
3844
(
1978
).
81.
A.
Louis
,
P.
Bolhuis
, and
J.
Hansen
,
Phys. Rev. E
62
(
6
),
7961
(
2000
).
82.
A.
Lang
,
C.
Likos
,
M.
Watzlawek
, and
H.
Löwen
,
J. Phys.: Condens. Matter
12
(
24
),
5087
(
2000
).
83.
A.
Archer
and
R.
Evans
,
Phys. Rev. E
64
(
4
),
041501
(
2001
).
84.
S.
Prestipino
,
F.
Saija
, and
P. V.
Giaquinta
,
Phys. Rev. E
71
(
5
),
050102
(
2005
).
85.
B. J.
Berne
and
P.
Pechukas
,
J. Chem. Phys.
56
(
8
),
4213
(
1972
).
86.
G.
Milano
,
S.
Goudeau
, and
F.
Müller-Plathe
,
J. Polym. Sci., Part B: Polym. Phys.
43
(
8
),
871
885
(
2005
).
87.
N.
Basdevant
,
D.
Borgis
, and
T.
Ha-Duong
,
J. Phys. Chem. B
111
(
31
),
9390
9399
(
2007
).
88.
S.
John
and
G.
Csányi
,
J. Phys. Chem. B
121
(
48
),
10934
10949
(
2017
).
89.
A. B.
de Oliveira
,
G.
Franzese
,
P. A.
Netz
, and
M. C.
Barbosa
,
J. Chem. Phys.
128
(
6
),
064901
(
2008
).
90.
A.
Chaimovich
and
M. S.
Shell
,
Phys. Chem. Chem. Phys.
11
(
12
),
1901
1915
(
2009
).
91.
M. E.
Johnson
,
T.
Head-Gordon
, and
A. A.
Louis
,
J. Chem. Phys.
126
(
14
),
144509
(
2007
).
92.
N.
Sherck
,
K.
Shen
,
M.
Nguyen
,
B.
Yoo
,
S.
Kohler
,
J. C.
Speros
,
K. T.
Delaney
,
M. S.
Shell
, and
G. H.
Fredrickson
,
ACS Macro Lett.
10
(
5
),
576
583
(
2021
).
93.
N.
Basdevant
,
D.
Borgis
, and
T.
Ha-Duong
,
J. Chem. Theory Comput.
9
(
1
),
803
813
(
2013
).
94.
R. D.
Hills
,
Protein Dynamics
, Methods in Molecular Biology Vol. 1084 (
Humana Press
,
2014
), pp.
123
140
.
95.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Elsevier
,
1990
).
96.
J. V.
Sengers
,
R.
Kayser
,
C.
Peters
, and
H.
White
,
Equations of State for Fluids and Fluid Mixtures
(
Elsevier
,
2000
).
97.
Á.
Mulero
,
Theory and Simulation of Hard-Sphere Fluids and Related Systems
(
Springer
,
2008
).
98.
A.
Santos
,
A Concise Course on the Theory of Classical Liquids
(
Springer
,
Berlin
,
2016
).
99.
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
129
(
18
),
184507
(
2008
).
100.
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
129
(
18
),
184508
(
2008
).
101.
U. R.
Pedersen
,
T. B.
Schrøder
, and
J. C.
Dyre
,
Phys. Rev. Lett.
105
(
15
),
157801
(
2010
).
102.
R.
Evans
,
Fundamentals of Inhomogeneous Fluids
(
Marcel Dekker
,
New York
,
1992
), Vol.
1
, pp.
85
176
.
103.
J. W.
Wagner
,
T.
Dannenhoffer-Lafage
,
J.
Jin
, and
G. A.
Voth
,
J. Chem. Phys.
147
(
4
),
044113
(
2017
).
104.
M. R.
DeLyser
and
W. G.
Noid
,
J. Chem. Phys.
151
(
22
),
224106
(
2019
).
105.
M. R.
DeLyser
and
W. G.
Noid
,
J. Chem. Phys.
156
(
3
),
034106
(
2022
).
106.
J.
Jin
,
Y.
Han
, and
G. A.
Voth
,
J. Chem. Theory Comput.
14
(
12
),
6159
6174
(
2018
).
107.
J.
Jin
and
G. A.
Voth
,
J. Phys. Chem. Lett.
14
(
6
),
1354
1362
(
2023
).
108.
J. F.
Dama
,
J.
Jin
, and
G. A.
Voth
,
J. Chem. Theory Comput.
14
(
4
),
2288
(
2018
).
109.
T.
Sanyal
and
M. S.
Shell
,
J. Chem. Phys.
145
(
3
),
034109
(
2016
).
110.
D.
Chandler
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
Oxford, UK
,
1987
).
111.
T. L.
Hill
,
An Introduction to Statistical Thermodynamics
(
Courier Corporation
,
1986
).
112.
T.
Hamelryck
,
M.
Borg
,
M.
Paluszewski
,
J.
Paulsen
,
J.
Frellsen
,
C.
Andreetta
,
W.
Boomsma
,
S.
Bottaro
, and
J.
Ferkinghoff-Borg
,
PloS One
5
(
11
),
e13714
(
2010
).
113.
E.
Kalligiannaki
,
V.
Harmandaris
,
M. A.
Katsoulakis
, and
P.
Plecháč
,
J. Chem. Phys.
143
(
8
),
084105
(
2015
).
114.
N. N.
Bogoliubov
,
Problems of the Dynamical Theory in Statistical Physics
(
Moscow-Leningrad
,
1946
).
115.
J.
Yvon
,
La théorie statistique des fluides et l'équation d'état
(
Hermann and cie
,
1935
).
116.
J. G.
Kirkwood
,
J. Chem. Phys.
14
(
3
),
180
201
(
1946
).
117.
M.
Born
and
H.
Green
,
Proc. R. Soc. London, Ser. A
188
(
1012
),
10
18
(
1946
).
118.
N.
Bogoliubov
,
Zh. Eksp. Teor. Fiz.
16
(
8
),
691
702
(
1946
).
119.
J. G.
Kirkwood
,
F. P.
Buff
, and
M. S.
Green
,
J. Chem. Phys.
17
(
10
),
988
994
(
1949
).
120.
J. W.
Mullinax
and
W. G.
Noid
,
Phys. Rev. Lett.
103
(
19
),
198104
(
2009
).
121.
J. W.
Mullinax
and
W. G.
Noid
,
J. Phys. Chem. C
114
(
12
),
5661
5674
(
2009
).
122.
J. W.
Mullinax
and
W. G.
Noid
,
J. Chem. Phys.
133
(
12
),
124107
(
2010
).
123.
J. F.
Rudzinski
and
W. G.
Noid
,
J. Phys. Chem. B
118
(
28
),
8295
8312
(
2014
).
124.
J. F.
Rudzinski
and
W. G.
Noid
,
Eur. Phys. J.: Spec. Top.
224
(
12
),
2193
2216
(
2015
).
125.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys.
136
(
19
),
194114
(
2012
).
126.
D.
Hankins
,
J.
Moskowitz
, and
F.
Stillinger
,
J. Chem. Phys.
53
(
12
),
4544
4554
(
1970
).
127.
J.
Jin
,
Y.
Han
,
A. J.
Pak
, and
G. A.
Voth
,
J. Chem. Phys.
154
(
4
),
044104
(
2021
).
128.
J.
Jin
,
A. J.
Pak
,
Y.
Han
, and
G. A.
Voth
,
J. Chem. Phys.
154
(
4
),
044105
(
2021
).
129.
S.
Eliezer
,
Fundamentals of Equations of State
(
Allied Publishers
,
2005
).
130.
L.
Ornstein
and
F.
Zernike
,
Proc. K. Ned. Akad. Wet.
19
(
2
),
1312
1315
(
1914
).
131.
T.
Morita
,
Prog. Theor. Phys.
20
(
6
),
920
938
(
1958
).
132.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
(
4
),
587
(
1976
).
133.
A.
Vompe
and
G.
Martynov
,
J. Chem. Phys.
100
(
7
),
5249
5258
(
1994
).
134.
R. J.
Speedy
,
J. Chem. Soc., Faraday Trans. 2
76
,
693
703
(
1980
).
135.
J.
Henderson
,
Mol. Phys.
48
(
2
),
389
400
(
1983
).
136.
M.
Llano-Restrepo
and
W. G.
Chapman
,
J. Chem. Phys.
97
(
3
),
2046
2054
(
1992
).
137.
M.
Llano-Restrepo
and
W. G.
Chapman
,
J. Chem. Phys.
100
(
7
),
5139
5148
(
1994
).
138.
W. G.
Chapman
,
J. Chem. Phys.
93
(
6
),
4299
4304
(
1990
).
139.
E.
Meeron
and
A. J.
Siegert
,
J. Chem. Phys.
48
(
7
),
3139
3155
(
1968
).
140.
E.
Grundke
and
D.
Henderson
,
Mol. Phys.
24
(
2
),
269
281
(
1972
).
141.
C.
Likos
,
M.
Watzlawek
, and
H.
Löwen
,
Phys. Rev. E
58
(
3
),
3135
(
1998
).
142.
143.
P.
Español
and
P.
Warren
,
Europhys. Lett.
30
(
4
),
191
(
1995
).
144.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
(
11
),
4423
4435
(
1997
).
145.
Y.
Han
,
J.
Jin
, and
G. A.
Voth
,
J. Chem. Phys.
154
(
8
),
084122
(
2021
).
146.
L.
Lu
and
G. A.
Voth
,
J. Phys. Chem. B
113
(
5
),
1501
1510
(
2009
).
148.
Y.
Peng
,
A. J.
Pak
,
A. E. P.
Durumeric
,
P. G.
Sahrmann
,
S.
Mani
,
J.
Jin
,
T. D.
Loose
,
J.
Beiter
, and
G. A.
Voth
,
J. Phys. Chem. B
127
(
40
),
8537
8550
(
2023
).
149.
T.
Dannenhoffer-Lafage
,
J. W.
Wagner
,
A. E. P.
Durumeric
, and
G. A.
Voth
,
J. Chem. Phys.
151
(
13
),
134115
(
2019
).
150.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
(
45
),
11225
11236
(
1996
).
151.
G. A.
Kaminski
,
R. A.
Friesner
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
,
J. Phys. Chem. B
105
(
28
),
6474
6487
(
2001
).
152.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
19
(
1995
).
153.
W. M.
Brown
,
P.
Wang
,
S. J.
Plimpton
, and
A. N.
Tharrington
,
Comput. Phys. Commun.
182
(
4
),
898
911
(
2011
).
154.
W. M.
Brown
,
A.
Kohlmeyer
,
S. J.
Plimpton
, and
A. N.
Tharrington
,
Comput. Phys. Commun.
183
(
3
),
449
459
(
2012
).
155.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
,
J. Comput. Chem.
30
(
13
),
2157
2164
(
2009
).
156.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
(
1
),
33
38
(
1996
).
157.
S.
Nosé
,
J. Chem. Phys.
81
(
1
),
511
519
(
1984
).
158.
W. G.
Hoover
,
Phys. Rev. A
31
(
3
),
1695
(
1985
).
159.
S.
Izvekov
,
P. W.
Chung
, and
B. M.
Rice
,
J. Chem. Phys.
133
(
6
),
064109
(
2010
).
160.
S.
Izvekov
,
P. W.
Chung
, and
B. M.
Rice
,
J. Chem. Phys.
135
(
4
),
044112
(
2011
).
161.
K. M.
Lebold
and
W. G.
Noid
,
J. Chem. Phys.
150
(
1
),
014104
(
2019
).
162.
M.
Dinpajooh
and
M. G.
Guenza
,
J. Phys. Chem. B
122
(
13
),
3426
3440
(
2017
).
163.
MATLAB, version 9.7.0 (R2019b)
,
The MathWorks Inc.
,
Natick, MA
(
2019
).
164.
J. J.
Moré
and
D. C.
Sorensen
,
SIAM J. Sci. Stat. Comput.
4
(
3
),
553
572
(
1983
).
165.
E.
Wilhelm
,
J. Chem. Phys.
58
(
9
),
3558
3560
(
1973
).
166.
T. B.
Schrøder
,
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
, and
J. C.
Dyre
,
J. Chem. Phys.
131
(
23
),
234503
(
2009
).
167.
N.
Gnan
,
T. B.
Schrøder
,
U. R.
Pedersen
,
N. P.
Bailey
, and
J. C.
Dyre
,
J. Chem. Phys.
131
(
23
),
234504
(
2009
).
168.
T. B.
Schrøder
,
N.
Gnan
,
U. R.
Pedersen
,
N. P.
Bailey
, and
J. C.
Dyre
,
J. Chem. Phys.
134
(
16
),
164505
(
2011
).
169.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E
51
(
5
),
4626
(
1995
).
170.
C.-C.
Fu
,
P. M.
Kulkarni
,
M. S.
Shell
, and
L. G.
Leal
,
J. Chem. Phys.
137
(
16
),
164106
(
2012
).
171.
H.
Wang
,
F. H.
Stillinger
, and
S.
Torquato
,
J. Chem. Phys.
153
(
12
) (
2020
).
172.
R.
Potestio
,
JUnQ
3
,
13
15
(
2013
).
173.
O.
Banerjee
,
L. E.
Ghaoui
,
A.
d'Aspremont
, and
G.
Natsoulis
, paper presented at the
Proceedings of the 23rd International Conference on Machine Learning
,
2006
.
174.
A.
Das
,
L.
Lu
,
H. C.
Andersen
, and
G. A.
Voth
,
J. Chem. Phys.
136
(
19
),
194115
(
2012
).
175.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys.
132
(
16
),
164106
(
2010
).
176.
H.-J.
Qian
,
P.
Carbone
,
X.
Chen
,
H. A.
Karimi-Varzaneh
,
C. C.
Liew
, and
F.
Müller-Plathe
,
Macromolecules
41
(
24
),
9919
9929
(
2008
).
177.
J.
Gay
and
B.
Berne
,
J. Chem. Phys.
74
(
6
),
3316
3319
(
1981
).
178.
P. A.
Golubkov
and
P.
Ren
,
J. Chem. Phys.
125
(
6
),
064103
(
2006
).
179.
D. J.
Cleaver
,
C. M.
Care
,
M. P.
Allen
, and
M. P.
Neal
,
Phys. Rev. E
54
(
1
),
559
(
1996
).
180.
D.
Antypov
and
D. J.
Cleaver
,
J. Chem. Phys.
120
(
21
),
10307
10316
(
2004
).
181.
M. E.
Sharp
,
F. X.
Vázquez
,
J. W.
Wagner
,
T.
Dannenhoffer-Lafage
, and
G. A.
Voth
,
J. Chem. Theory Comput.
15
(
5
),
3306
3315
(
2019
).
182.
R. A.
Marcus
,
Annu. Rev. Phys. Chem.
15
(
1
),
155
196
(
1964
).
183.
184.
D.
Berthelot
,
Hebd. Séances Acad. Sci.
126
,
1703
(
1898
).
185.
D.
Dimitrelis
and
J. M.
Prausnitz
,
Fluid Phase Equilib.
31
(
1
),
1
21
(
1986
).
186.
D.
Ben-Amotz
and
D. R.
Herschbach
,
J. Phys. Chem.
94
(
3
),
1038
1047
(
1990
).
187.
I.
Nezbeda
and
K.
Aim
,
Fluid Phase Equilib.
17
(
1
),
1
18
(
1984
).
188.
J.
Kolafa
and
I.
Nezbeda
,
Fluid Phase Equilib.
100
,
1
34
(
1994
).
189.
H. C.
Andersen
,
J. Chem. Phys.
72
(
4
),
2384
2393
(
1980
).
190.
P.
Vanya
and
J. A.
Elliott
,
Phys. Rev. E
102
(
1
),
013312
(
2020
).

Supplementary Material

You do not currently have access to this content.