We present a method for calculating first-order response properties in phaseless auxiliary field quantum Monte Carlo by applying automatic differentiation (AD). Biases and statistical efficiency of the resulting estimators are discussed. Our approach demonstrates that AD enables the calculation of reduced density matrices with the same computational cost scaling per sample as energy calculations, accompanied by a cost prefactor of less than four in our numerical calculations. We investigate the role of self-consistency and trial orbital choice in property calculations. We find that orbitals obtained using density functional theory perform well for the dipole moments of selected molecules compared to those optimized self-consistently.

1.
P.
Pulay
, “
Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules: I. Theory
,”
Mol. Phys.
17
,
197
204
(
1969
).
2.
J.
Pople
,
R.
Krishnan
,
H.
Schlegel
, and
J. S.
Binkley
, “
Derivative studies in Hartree-Fock and Møller-Plesset theories
,”
Int. J. Quantum Chem.
16
,
225
241
(
2009
).
3.
N. C.
Handy
and
H. F.
Schaefer
III
, “
On the evaluation of analytic energy derivatives for correlated wave functions
,”
J. Chem. Phys.
81
,
5031
5033
(
1984
).
4.
E.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
, “
Analytic energy derivatives in many-body methods. I. First derivatives
,”
J. Chem. Phys.
90
,
1752
1766
(
1989
).
5.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
, “
Recent advances in wave function-based methods of molecular-property calculations
,”
Chem. Rev.
112
,
543
631
(
2012
).
6.
A.
Griewank
and
A.
Walther
,
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
(
SIAM
,
2008
).
7.
U.
Ekström
,
L.
Visscher
,
R.
Bast
,
A. J.
Thorvaldsen
, and
K.
Ruud
, “
Arbitrary-order density functional response theory from automatic differentiation
,”
J. Chem. Theory Comput.
6
,
1971
1980
(
2010
).
8.
R.
Bast
,
U.
Ekström
,
B.
Gao
,
T.
Helgaker
,
K.
Ruud
, and
A. J.
Thorvaldsen
, “
The ab initio calculation of molecular electric, magnetic and geometric properties
,”
Phys. Chem. Chem. Phys.
13
,
2627
2651
(
2011
).
9.
A. S.
Abbott
,
B. Z.
Abbott
,
J. M.
Turney
, and
H. F.
Schaefer
III
, “
Arbitrary-order derivatives of quantum chemical methods via automatic differentiation
,”
J. Phys. Chem. Lett.
12
,
3232
3239
(
2021
).
10.
X.
Zhang
and
G. K.-L.
Chan
, “
Differentiable quantum chemistry with PySCF for molecules and materials at the mean-field level and beyond
,”
J. Chem. Phys.
157
,
204801
(
2022
).
11.
M. F.
Kasim
,
S.
Lehtola
, and
S. M.
Vinko
, “
DQC: A Python program package for differentiable quantum chemistry
,”
J. Chem. Phys.
156
,
084801
(
2022
).
12.
H.-J.
Liao
,
J.-G.
Liu
,
L.
Wang
, and
T.
Xiang
, “
Differentiable programming tensor networks
,”
Phys. Rev. X
9
,
031041
(
2019
).
13.
M. H.
Kalos
,
D.
Levesque
, and
L.
Verlet
, “
Helium at zero temperature with hard-sphere and other forces
,”
Phys. Rev. A
9
,
2178
(
1974
).
14.
D.
Ceperley
,
G. V.
Chester
, and
M. H.
Kalos
, “
Monte Carlo simulation of a many-fermion study
,”
Phys. Rev. B
16
,
3081
(
1977
).
15.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
(
1980
).
16.
M. P.
Nightingale
and
C. J.
Umrigar
,
Quantum Monte Carlo Methods in Physics and Chemistry
(
Springer Science & Business Media
,
1998
).
17.
W.
Foulkes
,
L.
Mitas
,
R.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
(
2001
).
18.
F.
Becca
and
S.
Sorella
,
Quantum Monte Carlo Approaches for Correlated Systems
(
Cambridge University Press
,
2017
).
19.
S.
Zhang
,
J.
Carlson
, and
J. E.
Gubernatis
, “
Constrained path quantum Monte Carlo method for fermion ground states
,”
Phys. Rev. Lett.
74
,
3652
(
1995
).
20.
S.
Zhang
,
J.
Carlson
, and
J. E.
Gubernatis
, “
Constrained path Monte Carlo method for fermion ground states
,”
Phys. Rev. B
55
,
7464
(
1997
).
21.
S.
Zhang
and
H.
Krakauer
, “
Quantum Monte Carlo method using phase-free random walks with Slater determinants
,”
Phys. Rev. Lett.
90
,
136401
(
2003
).
22.
W.
Al-Saidi
,
S.
Zhang
, and
H.
Krakauer
, “
Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis
,”
J. Chem. Phys.
124
,
224101
(
2006
).
23.
M.
Suewattana
,
W.
Purwanto
,
S.
Zhang
,
H.
Krakauer
, and
E. J.
Walter
, “
Phaseless auxiliary-field quantum Monte Carlo calculations with plane waves and pseudopotentials: Applications to atoms and molecules
,”
Phys. Rev. B
75
,
245123
(
2007
).
24.
H.
Hao
,
J.
Shee
,
S.
Upadhyay
,
C.
Ataca
,
K. D.
Jordan
, and
B. M.
Rubenstein
, “
Accurate predictions of electron binding energies of dipole-bound anions via quantum Monte Carlo methods
,”
J. Phys. Chem. Lett.
9
,
6185
6190
(
2018
).
25.
J.
Lee
,
F. D.
Malone
, and
M. A.
Morales
, “
Utilizing essential symmetry breaking in auxiliary-field quantum Monte Carlo: Application to the spin gaps of the C36 fullerene and an iron porphyrin model complex
,”
J. Chem. Theory Comput.
16
,
3019
3027
(
2020
).
26.
F. D.
Malone
,
A.
Mahajan
,
J. S.
Spencer
, and
J.
Lee
, “
Ipie: A Python-based auxiliary-field quantum Monte Carlo program with flexibility and efficiency on CPUs and GPUs
,”
J. Chem. Theory Comput.
19
,
109
121
(
2022
).
27.
J.
Shee
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
Singlet–triplet energy gaps of organic biradicals and polyacenes with auxiliary-field quantum Monte Carlo
,”
J. Chem. Theory Comput.
15
,
4924
4932
(
2019
).
28.
A.
Badinski
,
P.
Haynes
,
J.
Trail
, and
R.
Needs
, “
Methods for calculating forces within quantum Monte Carlo simulations
,”
J. Phys.: Condens. Matter
22
,
074202
(
2010
).
29.
M.
Casalegno
,
M.
Mella
, and
A. M.
Rappe
, “
Computing accurate forces in quantum Monte Carlo using Pulay’s corrections and energy minimization
,”
J. Chem. Phys.
118
,
7193
7201
(
2003
).
30.
C.
Filippi
and
C.
Umrigar
, “
Correlated sampling in quantum Monte Carlo: A route to forces
,”
Phys. Rev. B
61
,
R16291
(
2000
).
31.
S.
Moroni
,
S.
Saccani
, and
C.
Filippi
, “
Practical schemes for accurate forces in quantum Monte Carlo
,”
J. Chem. Theory Comput.
10
,
4823
4829
(
2014
).
32.
R.
Assaraf
and
M.
Caffarel
, “
Zero-variance zero-bias principle for observables in quantum Monte Carlo: Application to forces
,”
J. Chem. Phys.
119
,
10536
10552
(
2003
).
33.
M.
Motta
and
S.
Zhang
, “
Computation of ground-state properties in molecular systems: Back-propagation with auxiliary-field quantum Monte Carlo
,”
J. Chem. Theory Comput.
13
,
5367
5378
(
2017
).
34.
R. E.
Thomas
,
D.
Opalka
,
C.
Overy
,
P. J.
Knowles
,
A.
Alavi
, and
G. H.
Booth
, “
Analytic nuclear forces and molecular properties from full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
143
,
054108
(
2015
).
35.
S.
Sorella
and
L.
Capriotti
, “
Algorithmic differentiation and the calculation of forces by quantum Monte Carlo
,”
J. Chem. Phys.
133
,
234111
(
2010
).
36.
T.
Poole
, Calculating Derivatives within quantum Monte Carlo,
2014
.
37.
S.-X.
Zhang
,
Z.-Q.
Wan
, and
H.
Yao
, “
Automatic differentiable Monte Carlo: Theory and application
,”
Phys. Rev. Res.
5
(
3
),
033041
(
2023
).
38.
P.
Glasserman
,
Monte Carlo Methods in Financial Engineering
(
Springer
,
2004
), Vol.
53
.
39.
P. W.
Glynn
, “
Likelihood ratio gradient estimation for stochastic systems
,”
Commun. ACM
33
,
75
84
(
1990
).
40.
Y.
Bengio
,
N.
Léonard
, and
A.
Courville
, “
Estimating or propagating gradients through stochastic neurons for conditional computation
,” arXiv:1308.3432 (
2013
).
41.
S.
Mohamed
,
M.
Rosca
,
M.
Figurnov
, and
A.
Mnih
, “
Monte Carlo gradient estimation in machine learning
,”
J. Mach. Learn. Res.
21
,
5183
5244
(
2020
).
42.
M.
Motta
and
S.
Zhang
, “
Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1364
(
2018
).
43.
H.
Shi
and
S.
Zhang
, “
Some recent developments in auxiliary-field quantum Monte Carlo for real materials
,”
J. Chem. Phys.
154
,
024107
(
2021
).
44.
J.
Lee
,
H. Q.
Pham
, and
D. R.
Reichman
, “
Twenty years of auxiliary-field quantum Monte Carlo in quantum chemistry: An overview and assessment on main group chemistry and bond-breaking
,”
J. Chem. Theory Comput.
18
,
7024
7042
(
2022
).
45.
M.
Calandra Buonaura
and
S.
Sorella
, “
Numerical study of the two-dimensional Heisenberg model using a Green function Monte Carlo technique with a fixed number of walkers
,”
Phys. Rev. B
57
,
11446
(
1998
).
46.
P.
Whitlock
,
D.
Ceperley
,
G.
Chester
, and
M.
Kalos
, “
Properties of liquid and solid He4
,”
Phys. Rev. B
19
,
5598
(
1979
).
47.
D. M.
Ceperley
and
M.
Kalos
,
Monte Carlo Methods in Statistical Physics
(
Springer
,
1986
), pp.
145
194
.
48.
S. M.
Rothstein
, “
A survey on pure sampling in quantum Monte Carlo methods
,”
Can. J. Chem.
91
,
505
510
(
2013
).
49.
A.
Mahajan
,
J.
Lee
, and
S.
Sharma
, “
Selected configuration interaction wave functions in phaseless auxiliary field quantum Monte Carlo
,”
J. Chem. Phys.
156
,
174111
(
2022
).
50.
W.
Purwanto
and
S.
Zhang
, “
Quantum Monte Carlo method for the ground state of many-boson systems
,”
Phys. Rev. E
70
,
056702
(
2004
).
51.
N.
Blunt
,
G. H.
Booth
, and
A.
Alavi
, “
Density matrices in full configuration interaction quantum Monte Carlo: Excited states, transition dipole moments, and parallel distribution
,”
J. Chem. Phys.
146
,
244105
(
2017
).
52.
J.
Lee
,
F. D.
Malone
,
M. A.
Morales
, and
D. R.
Reichman
, “
Spectral functions from auxiliary-field quantum Monte Carlo without analytic continuation: The extended Koopmans’ theorem approach
,”
J. Chem. Theory Comput.
17
,
3372
3387
(
2021
).
53.
M.
Motta
and
S.
Zhang
, “
Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo
,”
J. Chem. Phys.
148
,
181101
(
2018
).
54.
J.
Shee
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
Chemical transformations approaching chemical accuracy via correlated sampling in auxiliary-field quantum Monte Carlo
,”
J. Chem. Theory Comput.
13
,
2667
2680
(
2017
).
55.
R.
Assaraf
,
M.
Caffarel
, and
A.
Kollias
, “
Chaotic versus nonchaotic stochastic dynamics in Monte Carlo simulations: A route for accurate energy differences in n-body systems
,”
Phys. Rev. Lett.
106
,
150601
(
2011
).
56.
S.
Chen
,
Y.
Yang
,
M.
Morales
, and
S.
Zhang
, “
Algorithm for branching and population control in correlated sampling
,” arXiv:2307.15203 (
2023
).
57.
J.
Gerratt
and
I. M.
Mills
, “
Force constants and dipole-moment derivatives of molecules from perturbed Hartree–Fock calculations. I
,”
J. Chem. Phys.
49
,
1719
1729
(
1968
).
58.
J.
Schulman
,
N.
Heess
,
T.
Weber
, and
P.
Abbeel
, “
Gradient estimation using stochastic computation graphs
,”
Adv. Neural Inf. Process. Syst.
2
,
3528
(
2015
).
59.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.
Chan
, “
PySCF: The Python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
60.
H.
Zhai
and
G. K.
Chan
, “
Low communication high performance ab initio density matrix renormalization group algorithms
,”
J. Chem. Phys.
154
,
224116
(
2021
).
61.
J.
Kim
,
A. D.
Baczewski
,
T. D.
Beaudet
,
A.
Benali
,
M. C.
Bennett
,
M. A.
Berrill
,
N. S.
Blunt
,
E. J. L.
Borda
,
M.
Casula
,
D. M.
Ceperley
,
S.
Chiesa
,
B. K.
Clark
,
R. C.
Clay
,
K. T.
Delaney
,
M.
Dewing
,
K. P.
Esler
,
H.
Hao
,
O.
Heinonen
,
P. R. C.
Kent
,
J. T.
Krogel
,
I.
Kylänpää
,
Y. W.
Li
,
M. G.
Lopez
,
Y.
Luo
,
F. D.
Malone
,
R. M.
Martin
,
A.
Mathuriya
,
J.
McMinis
,
C. A.
Melton
,
L.
Mitas
,
M. A.
Morales
,
E.
Neuscamman
,
W. D.
Parker
,
S. D.
Pineda Flores
,
N. A.
Romero
,
B. M.
Rubenstein
,
J. A. R.
Shea
,
H.
Shin
,
L.
Shulenburger
,
A. F.
Tillack
,
J. P.
Townsend
,
N. M.
Tubman
,
B.
Van Der Goetz
,
J. E.
Vincent
,
D. C.
Yang
,
Y.
Yang
,
S.
Zhang
, and
L.
Zhao
, “
QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids
,”
J. Phys.: Condens. Matter
30
,
195901
(
2018
).
62.
See https://github.com/ankit76/ad_afqmc/ for the code used to perform AD-AFQMC calculations.
63.
J.
Bradbury
,
R.
Frostig
,
P.
Hawkins
,
M. J.
Johnson
,
C.
Leary
,
D.
Maclaurin
,
G.
Necula
,
A.
Paszke
,
J.
VanderPlas
,
S.
Wanderman-Milne
, and
Q.
Zhang
, JAX: Composable transformations of Python+NumPy programs (
2018
), http://github.com/google/jax.
64.
See https://github.com/ankit76/ad_afqmc_data for the input and output files of AD-AFQMC calculations.
65.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2004
), Vol.
85
.
66.
F.
Shimizu
, “
Stark spectroscopy of NH3 ν2 band by 10-μ CO2 and N2O lasers
,”
J. Chem. Phys.
52
,
3572
3576
(
1970
).
67.
F.
Lovas
,
E.
Tiemann
,
J.
Coursey
,
S.
Kotochigova
,
J.
Chang
,
K.
Olsen
, and
R.
Dragoset
, Diatomic spectral database, NIST standard reference database (
2005
), Vol. 114.
68.
W.
Meerts
,
F.
De Leeuw
, and
A.
Dymanus
, “
Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy
,”
Chem. Phys.
22
,
319
324
(
1977
).
69.
P.
Theulé
,
A.
Callegari
,
T. R.
Rizzo
, and
J.
Muenter
, “
Fluorescence detected microwave Stark effect measurements in excited vibrational states of H2CO
,”
J. Chem. Phys.
119
,
8910
8915
(
2003
).
70.
R. D.
Nelson
,
D. R.
Lide
,
A. A.
Maryott
et al,
Selected Values of Electric Dipole Moments for Molecules in the Gas Phase
(
US National Bureau of Standards
,
Washington, DC
,
1967
), Vol.
10
.
71.
P.-F.
Loos
,
F.
Lipparini
,
M.
Boggio-Pasqua
,
A.
Scemama
, and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Highly accurate energies and benchmarks for medium sized molecules
,”
J. Chem. Theory Comput.
16
,
1711
1741
(
2020
).
72.
M.
Qin
,
H.
Shi
, and
S.
Zhang
, “
Coupling quantum Monte Carlo and independent-particle calculations: Self-consistent constraint for the sign problem based on the density or the density matrix
,”
Phys. Rev. B
94
,
235119
(
2016
).
73.
M.
Qin
, “
Self-consistent optimization of the trial wave function within the constrained path auxiliary field quantum Monte Carlo method using mixed estimators
,”
Phys. Rev. B
107
,
235124
(
2023
).

Supplementary Material

You do not currently have access to this content.