The phase diagram of hard helices differs from its hard rods counterpart by the presence of chiral “screw” phases stemming from the characteristic helical shape, in addition to the conventional liquid crystal phases also found for rod-like particles. Using extensive Monte Carlo and Molecular Dynamics simulations, we study the effect of the addition of a short-range attractive tail representing solvent-induced interactions to a fraction of the sites forming the hard helices, ranging from a single-site attraction to fully attractive helices for a specific helical shape. Different temperature regimes exist for different fractions of the attractive sites, as assessed in terms of the relative Boyle temperatures, that are found to be rather insensitive to the specific shape of the helical particle. The temperature range probed by the present study is well above the corresponding Boyle temperatures, with the phase behaviour still mainly entropically dominated and with the existence and location of the various liquid crystal phases only marginally affected. The pressure in the equation of state is found to decrease upon increasing the fraction of attractive beads and/or on lowering the temperature at fixed volume fraction, as expected on physical grounds. All screw phases are found to be stable within the considered range of temperatures with the smectic phase becoming more stable on lowering the temperature. By contrast, the location of the transition lines do not display a simple dependence on the fraction of attractive beads in the considered range of temperatures.

1.
S. C.
Glotzer
and
M. J.
Solomon
, “
Anisotropy of building blocks and their assembly into complex structures
,”
Nat. Mater.
6
,
557
562
(
2007
).
2.
P. F.
Damasceno
,
M.
Engel
, and
S. C.
Glotzer
, “
Predictive self-assembly of polyhedra into complex structures
,”
Science
337
,
453
457
(
2012
).
3.
A.
Walther
and
A. H.
Muller
, “
Janus particles: Synthesis, self-assembly, physical properties, and applications
,”
Chem. Rev.
113
,
5194
5261
(
2013
).
4.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
, “
Phase diagram of Janus particles
,”
Phys. Rev. Lett.
103
,
237801
(
2009
).
5.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
, “
A numerical study of one-patch colloidal particles: From square-well to Janus
,”
Phys. Chem. Chem. Phys.
12
,
11869
11877
(
2010
).
6.
Q.
Chen
,
J. K.
Whitmer
,
S.
Jiang
,
S. C.
Bae
,
E.
Luijten
, and
S.
Granick
, “
Supracolloidal reaction kinetics of Janus spheres
,”
Science
331
,
199
202
(
2011
).
7.
Q.
Chen
,
S. C.
Bae
, and
S.
Granick
, “
Directed self-assembly of a colloidal kagome lattice
,”
Nature
469
,
381
384
(
2011
).
8.
F.
Romano
and
F.
Sciortino
, “
Patchy from the bottom up
,”
Nat. Mater.
10
,
171
173
(
2011
).
9.
A.
Giacometti
,
C.
Gögelein
,
F.
Lado
,
F.
Sciortino
,
S.
Ferrari
, and
G.
Pastore
, “
From square-well to Janus: Improved algorithm for integral equation theory and comparison with thermodynamic perturbation theory within the Kern-Frenkel model
,”
J. Chem. Phys.
140
,
094104
(
2014
).
10.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
E.
Lascaris
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
et al, “
Water: A tale of two liquids
,”
Chem. Rev.
116
,
7463
7500
(
2016
).
11.
E. S.
Harper
,
G.
van Anders
, and
S. C.
Glotzer
, “
The entropic bond in colloidal crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
16703
16710
(
2019
).
12.
G.
Avvisati
,
T.
Vissers
, and
M.
Dijkstra
, “
Self-assembly of patchy colloidal dumbbells
,”
J. Chem. Phys.
142
,
084905
(
2015
).
13.
J. R.
Wolters
,
G.
Avvisati
,
F.
Hagemans
,
T.
Vissers
,
D. J.
Kraft
,
M.
Dijkstra
, and
W. K.
Kegel
, “
Self-assembly of ‘mickey mouse’ shaped colloids into tube-like structures: Experiments and simulations
,”
Soft Matter
11
,
1067
1077
(
2015
).
14.
G.
Munaò
,
P.
O’Toole
,
T. S.
Hudson
,
D.
Costa
,
C.
Caccamo
,
F.
Sciortino
, and
A.
Giacometti
, “
Cluster formation and phase separation in heteronuclear Janus dumbbells
,”
J. Phys.: Condens. Matter
27
,
234101
(
2015
).
15.
P.
O’Toole
,
A.
Giacometti
, and
T.
Hudson
, “
Phase diagram of heteronuclear Janus dumbbells
,”
Soft Matter
13
,
803
813
(
2017
).
16.
P.
O’Toole
,
G.
Munaò
,
A.
Giacometti
, and
T. S.
Hudson
, “
Self-assembly behaviour of hetero-nuclear Janus dumbbells
,”
Soft Matter
13
,
7141
7153
(
2017
).
17.
K.
Chaudhary
,
Q.
Chen
,
J. J.
Juarez
,
S.
Granick
, and
J. A.
Lewis
, “
Janus colloidal matchsticks
,”
J. Am. Chem. Soc.
134
,
12901
12903
(
2012
).
18.
Y.
Liu
,
W.
Li
,
T.
Perez
,
J. D.
Gunton
, and
G.
Brett
, “
Self assembly of Janus ellipsoids
,”
Langmuir
28
,
3
9
(
2012
).
19.
J.
Xu
,
Y.
Wang
, and
X.
He
, “
Self-assembly of Janus ellipsoids: A Brownian dynamics simulation with a quantitative nonspherical-particle model
,”
Soft Matter
11
,
7433
7439
(
2015
).
20.
S.
Paul
and
H.
Vashisth
, “
Self-assembly of lobed particles into amorphous and crystalline porous structures
,”
Soft Matter
16
,
1142
1147
(
2020
).
21.
S.
Paul
and
H.
Vashisth
, “
Self-assembly behavior of experimentally realizable lobed patchy particles
,”
Soft Matter
16
,
8101
8107
(
2020
).
22.
J.
Henzie
,
M.
Grünwald
,
A.
Widmer-Cooper
,
P. L.
Geissler
, and
P.
Yang
, “
Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices
,”
Nat. Mater.
11
,
131
137
(
2012
).
23.
J. S.
Oh
,
S.
Lee
,
S. C.
Glotzer
,
G.-R.
Yi
, and
D. J.
Pine
, “
Colloidal fibers and rings by cooperative assembly
,”
Nat. Commun.
10
,
3936
(
2019
).
24.
S. N.
Fejer
,
D.
Chakrabarti
,
H.
Kusumaatmaja
, and
D. J.
Wales
, “
Design principles for Bernal spirals and helices with tunable pitch
,”
Nanoscale
6
,
9448
9456
(
2014
).
25.
E.
Frezza
,
A.
Ferrarini
,
H. B.
Kolli
,
A.
Giacometti
, and
G.
Cinacchi
, “
The isotropic-to-nematic phase transition in hard helices: Theory and simulation
,”
J. Chem. Phys.
138
,
164906
(
2013
).
26.
H. B.
Kolli
,
E.
Frezza
,
G.
Cinacchi
,
A.
Ferrarini
,
A.
Giacometti
, and
T. S.
Hudson
, “
Communication: From rods to helices: Evidence of a screw-like nematic phase
,”
J. Chem. Phys.
140
,
081101
(
2014
).
27.
H. B.
Kolli
,
E.
Frezza
,
G.
Cinacchi
,
A.
Ferrarini
,
A.
Giacometti
,
T. S.
Hudson
,
C.
De Michele
, and
F.
Sciortino
, “
Self-assembly of hard helices: A rich and unconventional polymorphism
,”
Soft Matter
10
,
8171
8187
(
2014
).
28.
E.
Frezza
,
A.
Ferrarini
,
H. B.
Kolli
,
A.
Giacometti
, and
G.
Cinacchi
, “
Left or right cholesterics? A matter of helix handedness and curliness
,”
Phys. Chem. Chem. Phys.
16
,
16225
16232
(
2014
).
29.
S.
Dussi
,
S.
Belli
,
R.
Van Roij
, and
M.
Dijkstra
, “
Cholesterics of colloidal helices: Predicting the macroscopic pitch from the particle shape and thermodynamic state
,”
J. Chem. Phys.
142
,
074905
(
2015
).
30.
H. B.
Kolli
,
G.
Cinacchi
,
A.
Ferrarini
, and
A.
Giacometti
, “
Chiral self-assembly of helical particles
,”
Faraday Discuss.
186
,
171
186
(
2016
).
31.
G.
Cinacchi
,
A.
Ferrarini
,
A.
Giacometti
, and
H. B.
Kolli
, “
Cholesteric and screw-like nematic phases in systems of helical particles
,”
J. Chem. Phys.
147
,
224903
(
2017
).
32.
Z.
Dogic
and
S.
Fraden
, “
Smectic phase in a colloidal suspension of semiflexible virus particles
,”
Phys. Rev. Lett.
78
,
2417
(
1997
).
33.
Z.
Dogic
and
S.
Fraden
, “
Ordered phases of filamentous viruses
,”
Curr. Opin. Colloid Interface Sci.
11
,
47
55
(
2006
).
34.
E.
Grelet
, “
Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses
,”
Phys. Rev. X
4
,
021053
(
2014
).
35.
S.
Dussi
and
M.
Dijkstra
, “
Entropy-driven formation of chiral nematic phases by computer simulations
,”
Nat. Commun.
7
,
11175
(
2016
).
36.
H.
Wensink
and
L.
Morales-Anda
, “
Chiral assembly of weakly curled hard rods: Effect of steric chirality and polarity
,”
J. Chem. Phys.
143
,
144907
(
2015
).
37.
F.
Gámez
and
S.
Lago
, “
The global liquid crystal phase diagram of the nematogenic square-well line model
,”
Mol. Phys.
115
,
1186
1190
(
2017
).
38.
M.
Tripathy
and
K. S.
Schweizer
, “
Theoretical study of the structure and assembly of Janus rods
,”
J. Physi. Chem. B
117
,
373
384
(
2013
).
39.
A.
Repula
,
M.
Oshima Menegon
,
C.
Wu
,
P.
van der Schoot
, and
E.
Grelet
, “
Directing liquid crystalline self-organization of rodlike particles through tunable attractive single tips
,”
Phys. Rev. Lett.
122
,
128008
(
2019
).
40.
J. T.
Jack
and
P. C.
Millett
, “
Numerical study of the phase behavior of rod-like colloidal particles with attractive tips
,”
AIP Adv.
11
,
025030
(
2021
).
41.
J. A.
Wood
,
T.
Hudson
,
A.
Giacometti
, and
A.
Widmer-Cooper
, “
Self-assembly and phase behavior of Janus rods: Competition between shape and potential anisotropy
” (unpublished) (
2023
).
42.
P.
Bolhuis
and
D.
Frenkel
, “
Tracing the phase boundaries of hard spherocylinders
,”
J. Chem. Phys.
106
,
666
687
(
1997
).
43.
J. T.
Lopes
,
F.
Romano
,
E.
Grelet
,
L. F.
Franco
, and
A.
Giacometti
, “
Phase behavior of hard cylinders
,”
J. Chem. Phys.
154
,
104902
(
2021
).
44.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
45.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
46.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
47.
I.
Zerón
,
C.
Vega
, and
A.
Benavides
, “
Continuous version of a square-well potential of variable range and its application in molecular dynamics simulations
,”
Mol. Phys.
116
,
3355
3365
(
2018
).
48.
B.
De Braaf
,
M.
Oshima Menegon
,
S.
Paquay
, and
P.
Van Der Schoot
, “
Self-organisation of semi-flexible rod-like particles
,”
J. Chem. Phys.
147
,
244901
(
2017
).
49.
Y.
Liu
and
A.
Widmer-Cooper
, “
A versatile simulation method for studying phase behavior and dynamics in colloidal rod and rod-polymer suspensions
,”
J. Chem. Phys.
150
,
244508
(
2019
).
50.
Y.
Liu
,
J. A.
Wood
,
A.
Giacometti
, and
A.
Widmer-Cooper
, “
The thermodynamic origins of chiral twist in monolayer assemblies of rod-like colloids
,”
Nanoscale
14
,
16837
16844
(
2022
).
51.
J.
Vieillard-Baron
, “
The equation of state of a system of hard spherocylinders
,”
Mol. Phys.
28
,
809
818
(
1974
).
52.
E.
Barry
,
Z.
Hensel
,
Z.
Dogic
,
M.
Shribak
, and
R.
Oldenbourg
, “
Entropy-driven formation of a chiral liquid-crystalline phase of helical filaments
,”
Phys. Rev. Lett.
96
,
018305
(
2006
).
53.
S.
Yardimci
,
T.
Gibaud
,
W.
Schwenger
,
M. R.
Sartucci
,
P. D.
Olmsted
,
J. S.
Urbach
, and
Z.
Dogic
, “
Bonded straight and helical flagellar filaments form ultra-low-density glasses
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2215766120
(
2023
).
54.
J.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
(
Elsevier Science
,
2006
).
55.
A.
Yethiraj
and
C. K.
Hall
, “
Square-well diatomics: Bulk equation of state, density profiles near walls, virial coefficients and coexistence properties
,”
Mol. Phys.
72
,
619
641
(
1991
).
56.
D.
Heyes
,
P.
Turner
,
R.
English
,
R.
Williams
, and
A.
Brańka
, “
Second virial coefficient of rod-shaped molecules and molecular dynamics simulations of the isotropic phase
,”
Phys. Rev. E
91
,
042134
(
2015
).
57.
L.
Onsager
, “
The effects of shape on the interaction of colloidal particles
,”
Ann. N. Y. Acad. Sci.
51
,
627
659
(
1949
).
58.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
59.
G.
Cinacchi
and
L.
De Gaetani
, “
Mechanism of diffusion in the smectic-a phase of wormlike rods studied by computer simulation
,”
Phys. Rev. E
79
,
011706
(
2009
).

Supplementary Material

You do not currently have access to this content.