Polar surfaces undergo polarity compensation, which can lead to significantly different surface chemistry from their nonpolar counterparts. This process in turn can substantially alter the binding of adsorbates on the surface. Here, we find that hydrogen binds much more strongly to the polar (110) surface than the nonpolar (100) surface for a wide range of ABO3 perovskites, forming a hydroxyl layer on the O24− termination and a hydride layer on the ABO4+ termination of the (110) surface. The stronger adsorption on the polar surfaces can be explained by polarity compensation: hydrogen atoms can act as electron donors or acceptors to compensate for the polarity of perovskite surfaces. The relative stability of the surface terminations is further compared under different gas environments and several perovskites have been found to form stable surface hydride layers under oxygen-poor conditions. These results demonstrate the feasibility of creating stable surface hydrides on perovskites by polarity compensation which might lead to new hydrogenation catalysts based on ABO3 perovskites.

1.
C.
Noguera
, “
Polar oxide surfaces
,”
J. Phys.: Condens. Matter
12
,
R367
R410
(
2000
).
2.
J.
Goniakowski
,
F.
Finocchi
, and
C.
Noguera
, “
Polarity of oxide surfaces and nanostructures
,”
Rep. Prog. Phys.
71
,
016501
(
2007
).
3.
R.
Pentcheva
and
W. E.
Pickett
, “
Avoiding the polarization catastrophe in LaAlO3 overlayers on SrTiO3 through polar distortion
,”
Phys. Rev. Lett.
102
,
107602
(
2009
).
4.
O.
Dulub
,
U.
Diebold
, and
G.
Kresse
, “
Novel stabilization mechanism on polar surfaces: ZnO(0001)–Zn
,”
Phys. Rev. Lett.
90
,
016102
(
2003
).
5.
A. F.
Santander-Syro
,
O.
Copie
,
T.
Kondo
,
F.
Fortuna
,
S.
Pailhès
,
R.
Weht
,
X. G.
Qiu
,
F.
Bertran
,
A.
Nicolaou
,
A.
Taleb-Ibrahimi
,
P.
Le Fèvre
,
G.
Herranz
,
M.
Bibes
,
N.
Reyren
,
Y.
Apertet
,
P.
Lecoeur
,
A.
Barthélémy
, and
M. J.
Rozenberg
, “
Two-dimensional electron gas with universal subbands at the surface of SrTiO3
,”
Nature
469
,
189
(
2011
).
6.
C. F.
Chang
,
Z.
Hu
,
S.
Klein
,
X. H.
Liu
,
R.
Sutarto
,
A.
Tanaka
,
J. C.
Cezar
,
N. B.
Brookes
,
H. J.
Lin
,
H. H.
Hsieh
,
C. T.
Chen
,
A. D.
Rata
, and
L. H.
Tjeng
, “
Dynamic atomic reconstruction: How Fe3O4 thin films evade polar catastrophe for epitaxy
,”
Phys. Rev. X
6
,
041011
(
2016
).
7.
M.
Capdevila-Cortada
and
N.
López
, “
Entropic contributions enhance polarity compensation for CeO2(100) surfaces
,”
Nat. Mater.
16
,
328
(
2016
).
8.
J.
Goniakowski
and
C.
Noguera
, “
Microscopic mechanisms of stabilization of polar oxide surfaces: Transition metals on the MgO(111) surface
,”
Phys. Rev. B
66
,
085417
(
2002
).
9.
R.
Wahl
,
J. V.
Lauritsen
,
F.
Besenbacher
, and
G.
Kresse
, “
Stabilization mechanism for the polar ZnO(0001)–O surface
,”
Phys. Rev. B
87
,
085313
(
2013
).
10.
Z.
Wang
,
M.
Reticcioli
,
Z.
Jakub
,
I.
Sokolović
,
M.
Meier
,
L. A.
Boatner
,
M.
Schmid
,
G. S.
Parkinson
,
U.
Diebold
,
C.
Franchini
, and
M.
Setvin
, “
Surface chemistry on a polarizable surface: Coupling of CO with KTaO3(001)
,”
Sci. Adv.
8
,
eabq1433
(
2022
).
11.
F.
Polo-Garzon
,
S.-Z.
Yang
,
V.
Fung
,
G. S.
Foo
,
E. E.
Bickel
,
M. F.
Chisholm
,
D.-e.
Jiang
, and
Z.
Wu
, “
Controlling reaction selectivity through the surface termination of perovskite catalysts
,”
Angew. Chem., Int. Ed.
56
,
9820
9824
(
2017
).
12.
G. S.
Foo
,
Z. D.
Hood
, and
Z.
Wu
, “
Shape effect undermined by surface reconstruction: Ethanol dehydrogenation over shape-controlled SrTiO3 nanocrystals
,”
ACS Catal.
8
,
555
565
(
2018
).
13.
Z.
Bao
,
V.
Fung
,
F.
Polo-Garzon
,
Z. D.
Hood
,
S.
Cao
,
M.
Chi
,
L.
Bai
,
D.-e.
Jiang
, and
Z.
Wu
, “
The interplay between surface facet and reconstruction on isopropanol conversion over SrTiO3 nanocrystals
,”
J. Catal.
384
,
49
60
(
2020
).
14.
Q.
Jia
,
C.
Wang
,
J.
Liu
,
X.
Cai
,
L.
Zhong
,
G.
Yu
, and
D.
Duan
, “
Strong synergistic effect of the (110) and (100) facets of the SrTiO3 perovskite micro/nanocrystal: Decreasing the binding energy of exciton and superb photooxidation capability for Co2+
,”
Nanoscale
14
,
12875
12884
(
2022
).
15.
Z.
Wang
,
A.
Loon
,
A.
Subramanian
,
S.
Gerhold
,
E.
McDermott
,
J. A.
Enterkin
,
M.
Hieckel
,
B. C.
Russell
,
R. J.
Green
,
A.
Moewes
,
J.
Guo
,
P.
Blaha
,
M. R.
Castell
,
U.
Diebold
, and
L. D.
Marks
, “
Transition from reconstruction toward thin film on the (110) surface of strontium titanate
,”
Nano Lett.
16
,
2407
2412
(
2016
).
16.
M.
Riva
,
M.
Kubicek
,
X.
Hao
,
G.
Franceschi
,
S.
Gerhold
,
M.
Schmid
,
H.
Hutter
,
J.
Fleig
,
C.
Franchini
,
B.
Yildiz
, and
U.
Diebold
, “
Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide
,”
Nat. Commun.
9
,
3710
(
2018
).
17.
J. A.
Enterkin
,
A. K.
Subramanian
,
B. C.
Russell
,
M. R.
Castell
,
K. R.
Poeppelmeier
, and
L. D.
Marks
, “
A homologous series of structures on the surface of SrTiO3(110)
,”
Nat. Mater.
9
,
245
(
2010
).
18.
B. E.
Gaddy
,
E. A.
Paisley
,
J.-P.
Maria
, and
D. L.
Irving
, “
Overcoming the polarization catastrophe in the rocksalt oxides MgO and CaO
,”
Phys. Rev. B
90
,
125403
(
2014
).
19.
M.
Setvin
,
M.
Reticcioli
,
F.
Poelzleitner
,
J.
Hulva
,
M.
Schmid
,
L. A.
Boatner
,
C.
Franchini
, and
U.
Diebold
, “
Polarity compensation mechanisms on the perovskite surface KTaO3(001)
,”
Science
359
,
572
575
(
2018
).
20.
J. K.
Nørskov
,
J.
Rossmeisl
,
A.
Logadottir
,
L.
Lindqvist
,
J. R.
Kitchin
,
T.
Bligaard
, and
H.
Jonsson
, “
Origin of the overpotential for oxygen reduction at a fuel-cell cathode
,”
J. Phys. Chem. B
108
,
17886
17892
(
2004
).
21.
J.
Greeley
,
T. F.
Jaramillo
,
J.
Bonde
,
I.
Chorkendorff
, and
J. K.
Nørskov
, “
Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
,”
Nat. Mater.
5
,
909
913
(
2006
).
22.
A. A.
Latimer
,
A. R.
Kulkarni
,
H.
Aljama
,
J. H.
Montoya
,
J. S.
Yoo
,
C.
Tsai
,
F.
Abild-Pedersen
,
F.
Studt
, and
J. K.
Nørskov
, “
Understanding trends in C–H bond activation in heterogeneous catalysis
,”
Nat. Mater.
16
,
225
229
(
2017
).
23.
V.
Fung
,
F. F.
Tao
, and
D. E.
Jiang
, “
General structure-reactivity relationship for oxygen on transition-metal oxides
,”
J. Phys. Chem. Lett.
8
,
2206
2211
(
2017
).
24.
V.
Fung
,
Z.
Wu
, and
D.-e.
Jiang
, “
New bonding model of radical adsorbate on lattice oxygen of perovskites
,”
J. Phys. Chem. Lett.
9
,
6321
6325
(
2018
).
25.
C.
Coperet
, “
C–H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces
,”
Chem. Rev.
110
,
656
680
(
2010
).
26.
J.
Moon
,
Y.
Cheng
,
L. L.
Daemen
,
M.
Li
,
F.
Polo-Garzon
,
A. J.
Ramirez-Cuesta
, and
Z.
Wu
, “
Discriminating the role of surface hydride and hydroxyl for acetylene semihydrogenation over ceria through in situ neutron and infrared spectroscopy
,”
ACS Catal.
10
,
5278
5287
(
2020
).
27.
S. K. M.
Padavala
and
K. A.
Stoerzinger
, “
Role of hydride formation in electrocatalysis for sustainable chemical transformations
,”
ACS Catal.
13
,
4544
4551
(
2023
).
28.
J.
Kammert
,
J.
Moon
, and
Z.
Wu
, “
A review of the interactions between ceria and H2 and the applications to selective hydrogenation of alkynes
,”
Chin. J. Catal.
41
,
901
914
(
2020
).
29.
Y.
Kobayashi
,
O. J.
Hernandez
,
T.
Sakaguchi
,
T.
Yajima
,
T.
Roisnel
,
Y.
Tsujimoto
,
M.
Morita
,
Y.
Noda
,
Y.
Mogami
,
A.
Kitada
,
M.
Ohkura
,
S.
Hosokawa
,
Z.
Li
,
K.
Hayashi
,
Y.
Kusano
,
J. e.
Kim
,
N.
Tsuji
,
A.
Fujiwara
,
Y.
Matsushita
,
K.
Yoshimura
,
K.
Takegoshi
,
M.
Inoue
,
M.
Takano
, and
H.
Kageyama
, “
An oxyhydride of BaTiO3 exhibiting hydride exchange and electronic conductivity
,”
Nat. Mater.
11
,
507
511
(
2012
).
30.
Y.
Tang
,
Y.
Kobayashi
,
K.
Shitara
,
A.
Konishi
,
A.
Kuwabara
,
T.
Nakashima
,
C.
Tassel
,
T.
Yamamoto
, and
H.
Kageyama
, “
On hydride diffusion in transition metal perovskite oxyhydrides investigated via deuterium exchange
,”
Chem. Mater.
29
,
8187
8194
(
2017
).
31.
T.
Sakaguchi
,
Y.
Kobayashi
,
T.
Yajima
,
M.
Ohkura
,
C.
Tassel
,
F.
Takeiri
,
S.
Mitsuoka
,
H.
Ohkubo
,
T.
Yamamoto
,
J. e.
Kim
,
N.
Tsuji
,
A.
Fujihara
,
Y.
Matsushita
,
J.
Hester
,
M.
Avdeev
,
K.
Ohoyama
, and
H.
Kageyama
, “
Oxyhydrides of (Ca, Sr, Ba)TiO3 perovskite solid solutions
,”
Inorg. Chem.
51
,
11371
11376
(
2012
).
32.
J.
Kammert
,
J.
Moon
,
Y.
Cheng
,
L.
Daemen
,
S.
Irle
,
V.
Fung
,
J.
Liu
,
K.
Page
,
X.
Ma
,
V.
Phaneuf
,
J.
Tong
,
A. J.
Ramirez-Cuesta
, and
Z.
Wu
, “
Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst
,”
J. Am. Chem. Soc.
142
,
7655
7667
(
2020
).
33.
M.
Kitano
,
Y.
Inoue
,
H.
Ishikawa
,
K.
Yamagata
,
T.
Nakao
,
T.
Tada
,
S.
Matsuishi
,
T.
Yokoyama
,
M.
Hara
, and
H.
Hosono
, “
Essential role of hydride ion in ruthenium-based ammonia synthesis catalysts
,”
Chem. Sci.
7
,
4036
4043
(
2016
).
34.
P.-V.
Ong
,
L. E.
Johnson
,
H.
Hosono
, and
P. V.
Sushko
, “
Structure and stability of CaH2 surfaces: On the possibility of electron-rich surfaces in metal hydrides for catalysis
,”
J. Mater. Chem. A
5
,
5550
5558
(
2017
).
35.
M.
Kitano
,
J.
Kujirai
,
K.
Ogasawara
,
S.
Matsuishi
,
T.
Tada
,
H.
Abe
,
Y.
Niwa
, and
H.
Hosono
, “
Low-temperature synthesis of perovskite oxynitride-hydrides as ammonia synthesis catalysts
,”
J. Am. Chem. Soc.
141
,
20344
20353
(
2019
).
36.
Y.
Kobayashi
,
Y.
Tang
,
T.
Kageyama
,
H.
Yamashita
,
N.
Masuda
,
S.
Hosokawa
, and
H.
Kageyama
, “
Titanium-based hydrides as heterogeneous catalysts for ammonia synthesis
,”
J. Am. Chem. Soc.
139
,
18240
18246
(
2017
).
37.
M.
Hattori
,
N.
Okuyama
,
H.
Kurosawa
, and
M.
Hara
, “
Low-temperature ammonia synthesis on iron catalyst with an electron donor
,”
J. Am. Chem. Soc.
145
,
7888
7897
(
2023
).
38.
M.
Miyazaki
,
K.
Ogasawara
,
T.
Nakao
,
M.
Sasase
,
M.
Kitano
, and
H.
Hosono
, “
Hexagonal BaTiO(3−x)Hx oxyhydride as a water-durable catalyst support for chemoselective hydrogenation
,”
J. Am. Chem. Soc.
144
,
6453
6464
(
2022
).
39.
G.
Kresse
and
J.
Furthmuller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
40.
G.
Kresse
and
J.
Furthmuller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
41.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
42.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
43.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
44.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
45.
K.
Momma
and
F.
Izumi
, “
VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
46.
C.
Ricca
,
I.
Timrov
,
M.
Cococcioni
,
N.
Marzari
, and
U.
Aschauer
, “
Self-consistent DFT+U study of oxygen vacancies in SrTiO3
,”
Phys. Rev. Res.
2
,
023313
(
2020
).
47.
Q.
Wan
,
V.
Fung
,
S.
Lin
,
Z.
Wu
, and
D.-e.
Jiang
, “
Perovskite-supported Pt single atoms for methane activation
,”
J. Mater. Chem. A
8
,
4362
4368
(
2020
).

Supplementary Material

You do not currently have access to this content.