Atomic force microscopy (AFM) that can be simultaneously performed with scanning tunneling microscopy (STM) using metallic tips attached to self-sensing quartz cantilevers (qPlus sensors) has advanced the field of surface science by allowing for unprecedented spatial resolution under ultrahigh vacuum conditions. Performing simultaneous AFM and STM with atomic resolution in an electrochemical cell offers new possibilities to locally image both the vertical layering of the interfacial water and the lateral structure of the electrochemical interfaces. Here, a combined AFM/STM instrument realized with a qPlus sensor and a home-built potentiostat for electrochemical applications is presented. We demonstrate its potential by simultaneously imaging graphite with atomic resolution in acidic electrolytes. Additionally, we show its capability to precisely measure the interfacial solvent layering along the surface normal as a function of the applied potential.

1.
M. T. M.
Koper
, “
Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis
,”
J. Electroanal. Chem.
660
(
2
),
254
260
(
2011
).
2.
M. F.
Toney
,
J. N.
Howard
,
J.
Richer
,
G. L.
Borges
,
J. G.
Gordon
,
O. R.
Melroy
,
D. G.
Wiesler
,
D.
Yee
, and
L. B.
Sorensen
, “
Voltage-dependent ordering of water molecules at an electrode–electrolyte interface
,”
Nature
368
(
6470
),
444
446
(
1994
).
3.
K. I.
Ataka
,
T.
Yotsuyanagi
, and
M.
Osawa
, “
Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy
,”
J. Phys. Chem.
100
(
25
),
10664
10672
(
1996
).
4.
A.
Foelske-Schmitz
, in
Encyclopedia of Interfacial Chemistry
, edited by
K.
Wandelt
(
Elsevier
,
2018
), pp.
591
606
.
5.
F.
Zaera
, “
Probing liquid/solid interfaces at the molecular level
,”
Chem. Rev.
112
,
2920
2986
(
2012
).
6.
M.
Favaro
,
B.
Jeong
,
P. N.
Ross
,
J.
Yano
,
Z.
Hussain
,
Z.
Liu
, and
E. J.
Crumlin
, “
Unravelling the electrochemical double layer by direct probing of the solid/liquid interface
,”
Nat. Commun.
7
(
1
),
12695
(
2016
).
7.
O. M.
Magnussen
and
A.
Groß
, “
Toward an atomic-scale understanding of electrochemical interface structure and dynamics
,”
J. Am. Chem. Soc.
141
(
12
),
4777
4790
(
2019
).
8.
J. J.
Velasco-Velez
,
C. H.
Wu
,
T. A.
Pascal
,
L. F.
Wan
,
J.
Guo
,
D.
Prendergast
, and
M.
Salmeron
, “
The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy
,”
Science
346
(
6211
),
831
834
(
2014
).
9.
K.
Itaya
and
E.
Tomita
, “
Scanning tunneling microscope for electrochemistry - a new concept for the in situ scanning tunneling microscope in electrolyte solutions
,”
Surf. Sci.
201
(
3
),
L507
(
1988
).
10.
A. A.
Gewirth
and
B. K.
Niece
, “
Electrochemical applications of in situ scanning probe microscopy
,”
Chem. Rev.
97
(
4
),
1129
1162
(
1997
).
11.
M.
Nowicki
and
K.
Wandelt
,
Encyclopedia of Interfacial Chemistry
(
Elsevier
,
2018
), pp.
108
128
.
12.
Y.
Liang
,
J. H. K.
Pfisterer
,
D.
McLaughlin
,
C.
Csoklich
,
L.
Seidl
,
A. S.
Bandarenka
, and
O.
Schneider
, “
Electrochemical scanning probe microscopies in electrocatalysis
,”
Small Methods
3
,
1800387
(
2019
).
13.
L. A.
Kibler
and
D. M.
Kolb
, in
Handbook of Fuel Cells
, edited by
W.
Vielstich
,
H. A.
Gasteiger
,
A.
Lamm
, and
H.
Yokokawa
(
John Wiley & Sons, Ltd.
,
2010
), pp.
1
13
.
14.
J.
Rossmeisl
,
E.
Skúlason
,
M. E.
Björketun
,
V.
Tripkovic
, and
J. K.
Nørskov
, “
Modeling the electrified solid-liquid interface
,”
Chem. Phys. Lett.
466
(
1–3
),
68
71
(
2008
).
15.
A.
Groß
,
Surface and Interface Science
(
Wiley
,
2020
), pp.
471
515
.
16.
N. G.
Hörmann
,
O.
Andreussi
, and
N.
Marzari
, “
Grand canonical simulations of electrochemical interfaces in implicit solvation models
,”
J. Chem. Phys.
150
(
4
),
041730
(
2019
).
17.
H. H.
Heenen
,
J. A.
Gauthier
,
H. H.
Kristoffersen
,
T.
Ludwig
, and
K.
Chan
, “
Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches
,”
J. Chem. Phys.
152
(
14
),
144703
(
2020
).
18.
T.
Fukuma
and
R.
Garcia
, “
Atomic- and molecular-resolution mapping of solid-liquid interfaces by 3D atomic force microscopy
,”
ACS Nano
12
(
12
),
11785
11797
(
2018
).
19.
T.
Fukuma
,
Y.
Ueda
,
S.
Yoshioka
, and
H.
Asakawa
, “
Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy
,”
Phys. Rev. Lett.
104
(
1
),
016101
(
2010
).
20.
K.
Kimura
,
S.
Ido
,
N.
Oyabu
,
K.
Kobayashi
,
Y.
Hirata
,
T.
Imai
, and
H.
Yamada
, “
Visualizing water molecule distribution by atomic force microscopy
,”
J. Chem. Phys.
132
(
19
),
194705
(
2010
).
21.
H.
Söngen
,
M.
Nalbach
,
H.
Adam
, and
A.
Kühnle
, “
Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition
,”
Rev. Sci. Instrum.
87
(
6
),
063704
(
2016
).
22.
D. S.
Wastl
,
M.
Judmann
,
A. J.
Weymouth
, and
F. J.
Giessibl
, “
Atomic resolution of calcium and oxygen sublattices of calcite in ambient conditions by atomic force microscopy using qPlus sensors with sapphire tips
,”
ACS Nano
9
(
4
),
3858
3865
(
2015
).
23.
E.
Wutscher
and
F. J.
Giessibl
, “
Atomic force microscopy at ambient and liquid conditions with stiff sensors and small amplitudes
,”
Rev. Sci. Instrum.
82
(
9
),
093703
(
2011
).
24.
F. J.
Giessibl
, “
The qPlus sensor, a powerful core for the atomic force microscope
,”
Rev. Sci. Instrum.
90
(
1
),
011101
(
2019
).
25.
F.
Stilp
,
A.
Bereczuk
,
J.
Berwanger
,
N.
Mundigl
,
K.
Richter
, and
F. J.
Giessibl
, “
Very weak bonds to artificial atoms formed by quantum corrals
,”
Science
372
(
6547
),
1196
1200
(
2021
).
26.
F.
Giessibl
, “
Probing the nature of chemical bonds by atomic force microscopy
,”
Molecules
26
(
13
),
4068
(
2021
).
27.
M.
Emmrich
,
F.
Huber
,
F.
Pielmeier
,
J.
Welker
,
T.
Hofmann
,
M.
Schneiderbauer
,
D.
Meuer
,
S.
Polesya
,
S.
Mankovsky
,
D.
Ködderitzsch
,
H.
Ebert
, and
F. J.
Giessibl
, “
Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters
,”
Science
348
(
6232
),
308
311
(
2015
).
28.
F.
Huber
,
J.
Berwanger
,
S.
Polesya
,
S.
Mankovsky
,
H.
Ebert
, and
F. J.
Giessibl
, “
Chemical bond formation showing a transition from physisorption to chemisorption
,”
Science
366
(
6462
),
235
238
(
2019
).
29.
D. S.
Wastl
,
A. J.
Weymouth
, and
F. J.
Giessibl
, “
Optimizing atomic resolution of force microscopy in ambient conditions
,”
Phys. Rev. B
87
(
24
),
245415
(
2013
).
30.
K.
Pürckhauer
,
S.
Maier
,
A.
Merkel
,
D.
Kirpal
, and
F. J.
Giessibl
, “
Combined atomic force microscope and scanning tunneling microscope with high optical access achieving atomic resolution in ambient conditions
,”
Rev. Sci. Instrum.
91
(
8
),
083701
(
2020
).
31.
K.
Pürckhauer
,
A. J.
Weymouth
,
K.
Pfeffer
,
L.
Kullmann
,
E.
Mulvihill
,
M. P.
Krahn
,
D. J.
Müller
, and
F. J.
Giessibl
, “
Imaging in biologically-relevant environments with AFM using stiff qPlus sensors
,”
Sci. Rep.
8
(
1
),
9330
(
2018
).
32.
A.
J Weymouth
,
D.
Wastl
, and
F.
J Giessibl
, “
Advances in AFM: Seeing atoms in ambient conditions
,”
e-J. Surf. Sci. Nanotechnol.
16
,
351
355
(
2018
).
33.
K. K.
Kasem
and
S.
Jones
, “
Platinum as a reference electrode in electrochemical measurements
,”
Platinum Met. Rev.
52
(
2
),
100
106
(
2008
).
34.
T.
Seeholzer
,
D.
Tarau
,
L.
Hollendonner
,
A.
Auer
,
R.
Rachel
,
D.
Grohmann
,
F. J.
Giessibl
, and
A. J.
Weymouth
, “
A next-generation qPlus-sensor-based AFM setup: Resolving archaeal S-layer protein structures in air and liquid
,”
J. Phys. Chem. B
127
,
6949
6957
(
2023
).
35.
Y.
Yamada
,
T.
Ichii
,
T.
Utsunomiya
,
K.
Kimura
,
K.
Kobayashi
,
H.
Yamada
, and
H.
Sugimura
, “
Fundamental and higher eigenmodes of qPlus sensors with a long probe for vertical-lateral bimodal atomic force microscopy
,”
Nanoscale Adv.
5
(
3
),
840
850
(
2023
).
36.
M. D. M.
Dryden
and
A. R.
Wheeler
, “
DStat: A versatile, open-source potentiostat for electroanalysis and integration
,”
PLoS One
10
(
10
),
e0140349
(
2015
).
37.
T.
Utsunomiya
,
Y.
Yokota
,
T.
Enoki
, and
K. I.
Fukui
, “
Potential-dependent hydration structures at aqueous solution/graphite interfaces by electrochemical frequency modulation atomic force microscopy
,”
Chem. Commun.
50
(
98
),
15537
15540
(
2014
).
38.
M.
Müllner
,
Oxides in Aqueous Solution: Stability and Activity at the Atomic Scale
(
Technical University
,
Vienna
,
2021
).
39.
D.
Tománek
,
S. G.
Louie
,
H. J.
Mamin
,
D. W.
Abraham
,
R. E.
Thomson
,
E.
Ganz
, and
J.
Clarke
, “
Theory and observation of highly asymmetric atomic structure in scanning-tunneling-microscopy images of graphite
,”
Phys. Rev. B
35
(
14
),
7790
7793
(
1987
).
40.
I. P.
Batra
,
N.
García
,
H.
Rohrer
,
H.
Salemink
,
E.
Stoll
, and
S.
Ciraci
, “
A study of graphite surface with stm and electronic structure calculations
,”
Surf. Sci. Lett.
181
(
1–2
),
126
138
(
1987
).
41.
S.
Hembacher
,
F. J.
Giessibl
,
J.
Mannhart
, and
C. F.
Quate
, “
Revealing the hidden atom in graphite by low-temperature atomic force microscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
100
(
22
),
12539
12542
(
2003
).
42.
D.
Martin-Jimenez
,
E.
Chacon
,
P.
Tarazona
, and
R.
Garcia
, “
Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface
,”
Nat. Commun.
7
(
1
),
12164
(
2016
).
43.
K.
Suzuki
,
N.
Oyabu
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
, “
Atomic-resolution imaging of graphite-water interface by frequency modulation atomic force microscopy
,”
Appl. Phys. Express
4
(
12
),
125102
(
2011
).
44.
H.
Söngen
,
Y.
Morais Jaques
,
L.
Zivanovic
,
S.
Seibert
,
R.
Bechstein
,
P.
Spijker
,
H.
Onishi
,
A. S.
Foster
, and
A.
Kühnle
, “
Hydration layers at the graphite-water interface: Attraction or confinement
,”
Phys. Rev. B
100
(
20
),
205410
(
2019
).

Supplementary Material

You do not currently have access to this content.