Nanosheets of transition metal dichalcogenides with prospects of photocatalysis and optoelectronics applications have significant potential in device fabrication due to their low-cost production and easily controllable morphology. Here, non-degenerate pump-probe differential transmission studies with varying pump-fluence have been carried out on single-phase 2H–MoSe2 and mixed-phase 1T/2H–MoSe2 nanosheets to characterize their excited carrier dynamics. For both the samples, the differential probe transmission data show photo-induced bleaching at earlier pump-probe delay followed by photo-induced absorption unveiling signatures of exciton-state filling, exciton trapping, defect-mediated photo-induced probe absorption and recombination of defect bound excitons. The exciton trapping and photo-induced absorption by the trapped-carriers are estimated to occur with time constant of ∼430 to 500 fs based on multi-exponential modelling of the differential transmission till pump-probe delay of ∼3.5 ps. Biexponential modeling of the subsequent slow-recovery of the negative differential transmission at pump-probe delay ≳3.5 ps reveals that the exciton recombination happens via two distinct decay channels with ∼25 to 55 ps (τ1) and ≳1 ns (τ2) time constants. Pump-fluence dependent reduction in τ1 and further modelling of exciton population using higher order kinetic rate equation reveals that the two-body exciton-exciton annihilation governs the exciton recombination initially with a decay rate of 108 cm3s−1. The detailed analysis suggests that the fraction of total excitons that decay via long decay channel decreases with increasing exciton density for 2H–MoSe2, in contrast to 1T/2H–MoSe2 where the fraction of excitons decaying via long decay channel remains constant.

1.
Y.
Zhang
,
T.-R.
Chang
,
B.
Zhou
,
Y.-T.
Cui
,
H.
Yan
,
Z.
Liu
,
F.
Schmitt
,
J.
Lee
,
R.
Moore
,
Y.
Chen
,
H.
Lin
,
H.-T.
Jeng
,
S.-K.
Mo
,
Z.
Hussain
,
A.
Bansil
, and
Z.-X.
Shen
, “
Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2
,”
Nat. Nanotechnol.
9
,
111
115
(
2014
).
2.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin MoS2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
,
136805
(
2010
).
3.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
, “
Emerging photoluminescence in monolayer MoS2
,”
Nano Lett.
10
,
1271
1275
(
2010
).
4.
W.
Jin
,
P.-C.
Yeh
,
N.
Zaki
,
D.
Zhang
,
J. T.
Sadowski
,
A.
Al-Mahboob
,
A. M.
van der Zande
,
D. A.
Chenet
,
J. I.
Dadap
,
I. P.
Herman
,
P.
Sutter
,
J.
Hone
, and
R. M.
Osgood
, “
Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy
,”
Phys. Rev. Lett.
111
,
106801
(
2013
).
5.
M. H.
Naik
and
M.
Jain
, “
Origin of layer dependence in band structures of two-dimensional materials
,”
Phys. Rev. B
95
,
165125
(
2017
).
6.
H.
Zeng
,
J.
Dai
,
W.
Yao
,
D.
Xiao
, and
X.
Cui
, “
Valley polarization in MoS2 monolayers by optical pumping
,”
Nat. Nanotechnol.
7
,
490
493
(
2012
).
7.
K. F.
Mak
,
K.
He
,
J.
Shan
, and
T. F.
Heinz
, “
Control of valley polarization in monolayer MoS2 by optical helicity
,”
Nat. Nanotechnol.
7
,
494
498
(
2012
).
8.
T.
Cao
,
G.
Wang
,
W.
Han
,
H.
Ye
,
C.
Zhu
,
J.
Shi
,
Q.
Niu
,
P.
Tan
,
E.
Wang
,
B.
Liu
, and
J.
Feng
, “
Valley-selective circular dichroism of monolayer molybdenum disulphide
,”
Nat. Commun.
3
,
887
(
2012
).
9.
J.
Ye
,
T.
Yan
,
B.
Niu
,
Y.
Li
, and
X.
Zhang
, “
Nonlinear dynamics of trions under strong optical excitation in monolayer MoSe2
,”
Sci. Rep.
8
,
2389
(
2018
).
10.
M.
Selig
,
F.
Katsch
,
R.
Schmidt
,
S.
Michaelis de Vasconcellos
,
R.
Bratschitsch
,
E.
Malic
, and
A.
Knorr
, “
Ultrafast dynamics in monolayer transition metal dichalcogenides: Interplay of dark excitons, phonons, and intervalley exchange
,”
Phys. Rev. Res.
1
,
022007
(
2019
).
11.
K.
He
,
N.
Kumar
,
L.
Zhao
,
Z.
Wang
,
K. F.
Mak
,
H.
Zhao
, and
J.
Shan
, “
Tightly bound excitons in monolayer WSe2
,”
Phys. Rev. Lett.
113
,
026803
(
2014
).
12.
A.
Arora
,
K.
Nogajewski
,
M.
Molas
,
M.
Koperski
, and
M.
Potemski
, “
Exciton band structure in layered MoSe2: From a monolayer to the bulk limit
,”
Nanoscale
7
,
20769
20775
(
2015
).
13.
N.
Kumar
,
S.
Najmaei
,
Q.
Cui
,
F.
Ceballos
,
P. M.
Ajayan
,
J.
Lou
, and
H.
Zhao
, “
Second harmonic microscopy of monolayer MoS2
,”
Phys. Rev. B
87
,
161403
(
2013
).
14.
L. M.
Malard
,
T. V.
Alencar
,
A. P. M.
Barboza
,
K. F.
Mak
, and
A. M.
de Paula
, “
Observation of intense second harmonic generation from MoS2 atomic crystals
,”
Phys. Rev. B
87
,
201401
(
2013
).
15.
N.
Kumar
,
Q.
Cui
,
F.
Ceballos
,
D.
He
,
Y.
Wang
, and
H.
Zhao
, “
Exciton-exciton annihilation in MoSe2 monolayers
,”
Phys. Rev. B
89
,
125427
(
2014
).
16.
K.
Thakar
and
S.
Lodha
, “
Optoelectronic and photonic devices based on transition metal dichalcogenides
,”
Mater. Res. Express
7
,
014002
(
2020
).
17.
S.
Ahmed
and
J.
Yi
, “
Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors
,”
Nano-Micro Lett.
9
,
50
(
2017
).
18.
Z.
Gong
,
G.-B.
Liu
,
H.
Yu
,
D.
Xiao
,
X.
Cui
,
X.
Xu
, and
W.
Yao
, “
Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers
,”
Nat. Commun.
4
,
2053
(
2013
).
19.
O. L.
Sanchez
,
D.
Ovchinnikov
,
S.
Misra
,
A.
Allain
, and
A.
Kis
, “
Valley polarization by spin injection in a light-emitting van der Waals heterojunction
,”
Nano Lett.
16
,
5792
5797
(
2016
).
20.
T.
Zhang
and
J.
Wang
, “
Defect-enhanced exciton–exciton annihilation in monolayer transition metal dichalcogenides at high exciton densities
,”
ACS Photonics
8
,
2770
2780
(
2021
).
21.
K.
Chen
,
R.
Ghosh
,
X.
Meng
,
A.
Roy
,
J.-S.
Kim
,
F.
He
,
S. C.
Mason
,
X.
Xu
,
J.-F.
Lin
,
D.
Akinwande
,
S. K.
Banerjee
, and
Y.
Wang
, “
Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2
,”
npj 2D Mater. Appl.
1
,
15
(
2017
).
22.
C. S.
M
,
G.
Pippia
,
I.
Tanghe
,
B.
Martín-García
,
A.
Rousaki
,
P.
Vandenabeele
,
P.
Schiettecatte
,
I.
Moreels
, and
P.
Geiregat
, “
Charge carrier dynamics in colloidally synthesized monolayer MoX2 nanosheets
,”
J. Phys. Chem. Lett.
14
,
2620
2626
(
2023
).
23.
N.
Li
,
J.
Wu
,
Y.
Lu
,
Z.
Zhao
,
H.
Zhang
,
X.
Li
,
Y.-Z.
Zheng
, and
X.
Tao
, “
Stable multiphasic 1T/2H MoSe2 nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution
,”
Appl. Catal. B: Environ.
238
,
27
37
(
2018
).
24.
L.
Zhou
,
R.
Wu
,
Y.
Jiang
,
Z.
Li
, and
S.
Wei
, “
Construction of heterogeneous 1T/2H MoSe2 homojunction nanosheets with excellent broad-spectrum photocatalytic activity
,”
J. Mater. Sci.
57
,
14386
14397
(
2022
).
25.
K.
Chen
,
A.
Roy
,
A.
Rai
,
A.
Valsaraj
,
X.
Meng
,
F.
He
,
X.
Xu
,
L. F.
Register
,
S.
Banerjee
, and
Y.
Wang
, “
Carrier trapping by oxygen impurities in molybdenum diselenide
,”
ACS Appl. Mater. Interfaces
10
,
1125
1131
(
2018
).
26.
P.
Schiettecatte
,
P.
Geiregat
, and
Z.
Hens
, “
Ultrafast carrier dynamics in few-layer colloidal molybdenum disulfide probed by broadband transient absorption spectroscopy
,”
J. Phys. Chem. C
123
,
10571
10577
(
2019
).
27.
G.
Kime
,
M. A.
Leontiadou
,
J. R.
Brent
,
N.
Savjani
,
P.
O’Brien
, and
D.
Binks
, “
Ultrafast charge dynamics in dispersions of monolayer MoS2 nanosheets
,”
J. Phys. Chem. C
121
,
22415
22421
(
2017
).
28.
P.
Taank
,
R.
Karmakar
,
R.
Sharma
,
R. K.
Yadav
,
M.
Shrivastava
,
N. C.
Maurya
,
T. K.
Maji
,
D.
Karmakar
, and
K. V.
Adarsh
, “
An insightful picture of multi-particle recombination in few-layer MoS2 nanosheets
,”
J. Phys. Chem. C
126
,
416
422
(
2022
).
29.
Y.-C.
Lee
,
S.-W.
Chang
,
S.-H.
Chen
,
S.-L.
Chen
, and
H.-L.
Chen
, “
Optical inspection of 2D materials: From mechanical exfoliation to wafer-scale growth and beyond
,”
Advanced Science
9
,
2102128
(
2022
).
30.
M.
Nasilowski
,
B.
Mahler
,
E.
Lhuillier
,
S.
Ithurria
, and
B.
Dubertret
, “
Two-dimensional colloidal nanocrystals
,”
Chem. Rev.
116
,
10934
10982
(
2016
).
31.
X.
Sui
,
H.
Wang
,
C.
Liang
,
Q.
Zhang
,
H.
Bo
,
K.
Wu
,
Z.
Zhu
,
Y.
Gong
,
S.
Yue
,
H.
Chen
,
Q.
Shang
,
Y.
Mi
,
P.
Gao
,
Y.
Zhang
,
S.
Meng
, and
X.
Liu
, “
Ultrafast internal exciton dissociation through edge states in MoS2 nanosheets with diffusion blocking
,”
Nano Lett.
22
,
5651
5658
(
2022
).
32.
A. P.
Frauendorf
,
A.
Niebur
,
L.
Harms
,
S.
Shree
,
B.
Urbaszek
,
M.
Oestreich
,
J.
Hübner
, and
J.
Lauth
, “
Room temperature micro-photoluminescence studies of colloidal WS2 nanosheets
,”
J. Phys. Chem. C
125
,
18841
18848
(
2021
).
33.
G.
Pippia
,
A.
Rousaki
,
M.
Barbone
,
J.
Billet
,
R.
Brescia
,
A.
Polovitsyn
,
B.
Martín-García
,
M.
Prato
,
F.
De Boni
,
M. M.
Petrić
,
A.
Ben Mhenni
,
I.
Van Driessche
,
P.
Vandenabeele
,
K.
Müller
, and
I.
Moreels
, “
Colloidal continuous injection synthesis of fluorescent MoX2 (X = S, Se) nanosheets as a first step toward photonic applications
,”
ACS Appl. Nano Mater.
5
,
10311
10320
(
2022
).
34.
S.
Mukherjee
,
A. K.
NM
,
S.
Ramesh
,
B.
Karthikeyan
, and
N.
Kamaraju
, “
Many-body interaction governs the ultrafast relaxation dynamics of hot holes in CuS nanoflakes and photocatalytic efficiency-enhanced CuS/Ag2S nanocomposites
,”
ACS Appl. Opt. Mater.
1
,
1332
(
2023
).
35.
P.
Schiettecatte
,
Z.
Hens
, and
P.
Geiregat
, “
A roadmap to decipher ultrafast photophysics in two-dimensional nanomaterials
,”
J. Chem. Phys.
158
,
014202
(
2023
).
36.
H.
Wang
,
C.
Zhang
, and
F.
Rana
, “
Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2
,”
Nano Lett.
15
,
339
345
(
2015
).
37.
H. J.
Shin
,
S.
Bae
, and
S.
Sim
, “
Ultrafast auger process in few-layer PtSe2
,”
Nanoscale
12
,
22185
22191
(
2020
).
38.
D.
Erben
,
A.
Steinhoff
,
C.
Gies
,
G.
Schönhoff
,
T. O.
Wehling
, and
F.
Jahnke
, “
Excitation-induced transition to indirect band gaps in atomically thin transition-metal dichalcogenide semiconductors
,”
Phys. Rev. B
98
,
035434
(
2018
).
39.
Y.
Lin
,
X.
Ling
,
L.
Yu
,
S.
Huang
,
A. L.
Hsu
,
Y.-H.
Lee
,
J.
Kong
,
M. S.
Dresselhaus
, and
T.
Palacios
, “
Dielectric screening of excitons and trions in single-layer MoS2
,”
Nano Lett.
14
,
5569
5576
(
2014
).
40.
A.
Mondal
,
H. R.
Inta
,
V.
Bheemireddy
,
S.
Ghosh
, and
V.
Mahalingam
, “
Cr3+ ion-induced phase stabilization of 1T-MoSe2 with abundant active sites for efficient hydrogen evolution reaction
,”
ChemNanoMat
7
,
1063
1071
(
2021
).
41.
J. C.
Shaw
,
H.
Zhou
,
Y.
Chen
,
N. O.
Weiss
,
Y.
Liu
,
Y.
Huang
, and
X.
Duan
, “
Chemical vapor deposition growth of monolayer MoSe2 nanosheets
,”
Nano Res.
7
,
511
517
(
2014
).
42.
S.
Tongay
,
J.
Zhou
,
C.
Ataca
,
K.
Lo
,
T. S.
Matthews
,
J.
Li
,
J. C.
Grossman
, and
J.
Wu
, “
Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2
,”
Nano Lett.
12
,
5576
5580
(
2012
).
43.
D. P.
Khatua
,
A.
Singh
,
S.
Gurung
, and
J.
Jayabalan
, “
Excitation density dependent carrier dynamics in a monolayer MoS2: Exciton dissociation, formation and bottlenecking
,”
Micro Nanostruct.
165
,
207205
(
2022
).
44.
C.
Jian
,
Q.
Cai
,
W.
Hong
,
J.
Li
, and
W.
Liu
, “
Edge-riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction
,”
Small
14
,
1703798
(
2018
).
45.
Y.
Wang
,
X.
Xiao
,
T.
Ding
, and
M.
Lu
, “
Mixed 1T-2H phase MoSe2 as interfacial charge-transfer-bridge to boosting photocatalytic activity of dual z-scheme AgI/1T-2H MoSe2/Bi4O5Br2 heterojunction
,”
J. Alloys Compd.
875
,
160092
(
2021
).
46.
C.-T.
Wu
,
S.-Y.
Hu
,
K.-K.
Tiong
, and
Y.-C.
Lee
, “
Anisotropic effects in the Raman scattering of Re-doped 2H-MoSe2 layered semiconductors
,”
Res. Phys.
7
,
4096
4100
(
2017
).
47.
X.
Lu
,
M. I. B.
Utama
,
J.
Lin
,
X.
Gong
,
J.
Zhang
,
Y.
Zhao
,
S. T.
Pantelides
,
J.
Wang
,
Z.
Dong
,
Z.
Liu
,
W.
Zhou
, and
Q.
Xiong
, “
Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates
,”
Nano Lett.
14
,
2419
2425
(
2014
).
48.
M. T.
Dau
,
C.
Vergnaud
,
A.
Marty
,
F.
Rortais
,
C.
Beigné
,
H.
Boukari
,
E.
Bellet-Amalric
,
V.
Guigoz
,
O.
Renault
,
C.
Alvarez
,
H.
Okuno
,
P.
Pochet
, and
M.
Jamet
, “
Millimeter-scale layered MoSe2 grown on sapphire and evidence for negative magnetoresistance
,”
Appl. Phys. Lett.
110
,
011909
(
2017
).
49.
A.
Ghorai
,
S. K.
Ray
, and
A.
Midya
, “
MoSe2 nanosheets with tuneable optical properties for broadband visible light photodetection
,”
ACS Appl. Nano Mater.
4
,
2999
3006
(
2021
).
50.
A.
Brasington
,
D.
Golla
,
A.
Dave
,
B.
Chen
,
S.
Tongay
,
J.
Schaibley
,
B. J.
LeRoy
, and
A.
Sandhu
, “
Role of defects and phonons in bandgap dynamics of monolayer WS2 at high carrier densities
,”
J. Phys.: Mater.
4
,
015005
(
2021
).
51.
R.
Kappera
,
D.
Voiry
,
S. E.
Yalcin
,
W.
Jen
,
M.
Acerce
,
S.
Torrel
,
B.
Branch
,
S.
Lei
,
W.
Chen
,
S.
Najmaei
,
J.
Lou
,
P. M.
Ajayan
,
G.
Gupta
,
A. D.
Mohite
, and
M.
Chhowalla
, “
Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2
,”
APL Mater.
2
,
092516
(
2014
).
52.
Y.-J.
Chung
,
C.-S.
Yang
,
J.-T.
Lee
,
G. H.
Wu
, and
J. M.
Wu
, “
Coupling effect of piezo–flexocatalytic hydrogen evolution with hybrid 1T- and 2H-phase few-layered MoSe2 nanosheets
,”
Adv. Energy Mater.
10
,
2002082
(
2020
).
53.
D.
Sun
,
Y.
Rao
,
G. A.
Reider
,
G.
Chen
,
Y.
You
,
L.
Brézin
,
A. R.
Harutyunyan
, and
T. F.
Heinz
, “
Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide
,”
Nano Lett.
14
,
5625
5629
(
2014
).
54.
M.
Karmakar
,
S.
Mukherjee
,
S. K.
Ray
, and
P. K.
Datta
, “
Electron-hole plasma formation dynamics observed through exciton-plasma interactions in transition metal dichalcogenides
,”
Phys. Rev. B
104
,
075446
(
2021
).
55.
T.
Goswami
,
H.
Bhatt
,
K. J.
Babu
,
G.
Kaur
,
N.
Ghorai
, and
H. N.
Ghosh
, “
Ultrafast insights into high energy (C and D) excitons in few layer WS2
,”
J. Phys. Chem. Lett.
12
,
6526
6534
(
2021
).
56.
S.
Bae
,
S.
Nah
,
D.
Lee
,
M.
Sajjad
,
N.
Singh
,
K. M.
Kang
,
S.
Kim
,
G.-J.
Kim
,
J.
Kim
,
H.
Baik
,
K.
Lee
, and
S.
Sim
, “
Exciton-dominated ultrafast optical response in atomically thin PtSe2
,”
Small
17
,
2103400
(
2021
).
57.
D. P.
Khatua
,
A.
Singh
,
S.
Gurung
,
S.
Khan
,
M.
Tanwar
,
R.
Kumar
, and
J.
Jayabalan
, “
Ultrafast carrier dynamics in a monolayer MoS2 at carrier densities well above mott density
,”
J. Phys.: Condens. Matter
34
,
155401
(
2022
).
58.
D. P.
Khatua
,
A.
Singh
,
S.
Gurung
,
M.
Tanwar
,
R.
Kumar
, and
J.
Jayabalan
, “
A comparative study of ultrafast carrier dynamics near A, B, and C-excitons in a monolayer MoS2 at high excitation densities
,”
Opt. Mater.
126
,
112224
(
2022
).
59.
P.
Schiettecatte
,
D.
Poonia
,
I.
Tanghe
,
S.
Maiti
,
M.
Failla
,
S.
Kinge
,
Z.
Hens
,
L. D. A.
Siebbeles
, and
P.
Geiregat
, “
Unraveling the photophysics of liquid-phase exfoliated two-dimensional ReS2 nanoflakes
,”
J. Phys. Chem. C
125
,
20993
21002
(
2021
).
60.
S.
Sim
,
J.
Park
,
J.-G.
Song
,
C.
In
,
Y.-S.
Lee
,
H.
Kim
, and
H.
Choi
, “
Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics
,”
Phys. Rev. B
88
,
075434
(
2013
).
61.
M.
Seo
,
H.
Yamaguchi
,
A. D.
Mohite
,
S.
Boubanga-Tombet
,
J.-C.
Blancon
,
S.
Najmaei
,
P. M.
Ajayan
,
J.
Lou
,
A. J.
Taylor
, and
R. P.
Prasankumar
, “
Ultrafast optical microscopy of single monolayer molybdenum disulfide flakes
,”
Sci. Rep.
6
,
21601
(
2016
).
62.
T. J.
Miao
and
J.
Tang
, “
Characterization of charge carrier behavior in photocatalysis using transient absorption spectroscopy
,”
J. Chem. Phys.
152
,
194201
(
2020
).
63.
D.
Mandal
,
M.
Shrivastava
,
S.
Sharma
,
A. K.
Poonia
,
S.
Marik
,
R. P.
Singh
, and
K. V.
Adarsh
, “
Band edge carrier-induced sign reversal of an ultrafast nonlinear optical response in few-layer ReS2 nanoflakes
,”
ACS Appl. Nano Mater.
5
,
5479
5486
(
2022
).
64.
P. D.
Cunningham
,
K. M.
McCreary
, and
B. T.
Jonker
, “
Auger recombination in chemical vapor deposition-grown monolayer WS2
,”
J. Phys. Chem. Lett.
7
,
5242
5246
(
2016
).
65.
A.
Esser
,
K.
Seibert
,
H.
Kurz
,
G. N.
Parsons
,
C.
Wang
,
B. N.
Davidson
,
G.
Lucovsky
, and
R. J.
Nemanich
, “
Ultrafast recombination and trapping in amorphous silicon
,”
Phys. Rev. B
41
,
2879
2884
(
1990
).
66.
A.
Soni
,
D.
Kushavah
,
L.-S.
Lu
,
W.-H.
Chang
, and
S. K.
Pal
, “
Ultrafast exciton trapping and exciton–exciton annihilation in large-area CVD-grown monolayer WS2
,”
J. Phys. Chem. C
125
,
23880
23888
(
2021
).
67.
F.
Staub
,
U.
Rau
, and
T.
Kirchartz
, “
Statistics of the auger recombination of electrons and holes via defect levels in the band gap—Application to lead-halide perovskites
,”
ACS Omega
3
,
8009
8016
(
2018
).
68.
L.
Wang
,
S.
Zhang
,
J.
Huang
,
Y.
Mao
,
N.
Dong
,
X.
Zhang
,
I. M.
Kislyakov
,
H.
Wang
,
Z.
Wang
,
C.
Chen
,
L.
Zhang
, and
J.
Wang
, “
Auger-type process in ultrathin ReS2
,”
Opt. Mater. Express
10
,
1092
1104
(
2020
).
69.
W.
Rehm
and
R.
Fischer
, “
Fast radiationless recombination in amorphous silicon
,”
Phys. Status Solidi B
94
,
595
602
(
1979
).
70.
L.
Huang
and
T. D.
Krauss
, “
Quantized bimolecular auger recombination of excitons in single-walled carbon nanotubes
,”
Phys. Rev. Lett.
96
,
057407
(
2006
).
71.
K.
Wei
,
X.
Zheng
,
X.
Cheng
,
C.
Shen
, and
T.
Jiang
, “
Observation of ultrafast exciton–exciton annihilation in CsPbBr3 quantum dots
,”
Adv. Opt. Mater.
4
,
1993
1997
(
2016
).
72.
J.
Sarkar
,
S. G.
Menon
,
N.
Prasad
,
B.
Karthikeyan
, and
N.
Kamaraju
, “
Ultrafast carrier dynamics of undoped and Ho3+-doped α-bismuth oxide microrods
,”
J. Phys. Chem. C
123
,
10007
10012
(
2019
).
73.
A.
McAllister
,
D.
Bayerl
, and
E.
Kioupakis
, “
Radiative and auger recombination processes in indium nitride
,”
Appl. Phys. Lett.
112
,
251108
(
2018
).

Supplementary Material

You do not currently have access to this content.