The largest ever set, RotGT-2023, of statistically validated experimental components of rotational g tensors and respective vibrational corrections, has been created. The experimental values were collected from literature data. The vibrational corrections for obtaining equilibrium molecular g values have been calculated at the highest affordable coupled cluster level of theory. The set comprises 278 parameters from 129 molecules, including their isotopologues. Statistical assessment of the data has been performed to exclude unreliable parameters. A benchmarking of two theoretical approximations, based on coupled cluster and density functional theories, has been performed. The determined weighted mean and weighted standard deviations of the relative errors in calculated equilibrium g values are 1.09% and 2.07% for the ae-CCSD(T)/x2c-TZVPPall-s//ae-CCSD(T)/cc-pwCVTZ level. The obtained results can be used for predicting the rotational Zeeman effect, correcting rotational constants in spectroscopic studies and in molecular structure refinements. The latter has been demonstrated on the refinement of the molecular structure of silane SiH4, which resulted in rese(Si–H) = 1.473 323 1(27) Å. The other tested theoretical protocol, PBE0/x2c-TZVPPall-s//PBE0-D3BJ/def2-QZVPP, showed considerably worse statistical properties. The RotGT-2023 data set and the developed in this work statistical model are recommended for benchmarking of theoretical approximations for calculations of molecular magnetic properties.

1.
W. H.
Flygare
and
R. C.
Benson
, “
The molecular Zeeman effect in diamagnetic molecules and the determination of molecular magnetic moments (g values), magnetic susceptibilities, and molecular quadrupole moments
,”
Mol. Phys.
20
(
2
),
225
250
(
1971
).
2.
N.
Ramsey
,
Molecular Beams
(
Oxford University Press
,
Oxford
,
1956
).
3.
W. H.
Flygare
, “
Magnetic interactions in molecules and an analysis of molecular electronic charge distribution from magnetic parameters
,”
Chem. Rev.
74
(
6
),
653
687
(
1974
).
4.
W.
Hüttner
and
W. H.
Flygare
, “
Magnetic-field interactions in a rotating molecule
,”
J. Chem. Phys.
47
(
10
),
4137
4145
(
1967
).
5.
M.-K.
Lo
,
V. W.
Weiss
, and
W. H.
Flygare
, “
19F spin–rotation and spin–spin interactions, 19F magnetic shielding, and molecular magnetic moments for OCF2
,”
J. Chem. Phys.
45
(
7
),
2439
2449
(
1966
).
6.
W. H.
Flygare
,
W.
Hüttner
,
R. L.
Shoemaker
, and
P. D.
Foster
, “
Magnetic susceptibility anisotropy, molecular quadrupole moment, and the sign of the electric dipole moment in OCS
,”
J. Chem. Phys.
50
(
4
),
1714
1719
(
1969
).
7.
Dipole Moments, Quadrupole Coupling Constants, Hindered Rotation and Magnetic Interaction Constants of Diamagnetic Molecules
,
Landolt-Börnstein: Group II Molecules and Radicals Vol. 24C
, edited by
W.
Hüttner
(
Springer-Verlag
,
Berlin/Heidelberg
,
2002
).
8.
C.
Puzzarini
,
J. F.
Stanton
, and
J.
Gauss
, “
Quantum-chemical calculation of spectroscopic parameters for rotational spectroscopy
,”
Int. Rev. Phys. Chem.
29
(
2
),
273
367
(
2010
).
9.
J.
Demaison
,
H. D.
Rudolph
, and
A. G.
Császár
, “
Deformation of the benzene ring upon fluorination: Equilibrium structures of all fluorobenzenes
,”
Mol. Phys.
111
(
9–11
),
1539
1562
(
2013
).
10.
H. H.
Smith
,
B. J.
Esselman
,
S. A.
Wood
,
J. F.
Stanton
,
R.
Claude Woods
, and
R. J.
McMahon
, “
Improved semi-experimental equilibrium structure and high-level theoretical structures of ketene
,”
J. Chem. Phys.
158
(
24
),
244304
(
2023
).
11.
H. M.
Kelly
and
P. W.
Fowler
, “
Quadrupole moments, magnetisabilities and rotational g factors for first- and second-row hydrides
,”
Chem. Phys. Lett.
206
(
5–6
),
568
573
(
1993
).
12.
C. E.
Mohn
,
D. J. D.
Wilson
,
O. B.
Lutnæs
,
T.
Helgaker
, and
K.
Ruud
, “
The rotational g tensor as a benchmark for ab initio molecular property calculations
,”
Adv. Quantum Chem.
50
,
77
90
(
2005
).
13.
D. J. D.
Wilson
,
C. E.
Mohn
, and
T.
Helgaker
, “
The rotational g tensor as a benchmark for density-functional theory calculations of molecular magnetic properties
,”
J. Chem. Theory Comput.
1
(
5
),
877
888
(
2005
).
14.
O. B.
Lutnæs
,
A. M.
Teale
,
T.
Helgaker
,
D. J.
Tozer
,
K.
Ruud
, and
J.
Gauss
, “
Benchmarking density-functional-theory calculations of rotational g tensors and magnetizabilities using accurate coupled-cluster calculations
,”
J. Chem. Phys.
131
(
14
),
144104
(
2009
).
15.
W.
Gordy
and
R. L.
Cook
,
Microwave Molecular Spectra
,
3rd ed.
(
Wiley
,
New York
,
1984
).
16.
N.
Vogt
,
J.
Vogt
, and
J.
Demaison
, “
Accuracy of the rotational constants
,”
J. Mol. Struct.
988
(
1–3
),
119
127
(
2011
).
17.
J.
Demaison
, “
Experimental, semi-experimental and ab initio equilibrium structures
,”
Mol. Phys.
105
(
23–24
),
3109
3138
(
2007
).
18.
J.
Demaison
,
J.
Liévin
, and
N.
Vogt
, “
Accurate equilibrium structures of some challenging molecules: FNO, ClNO, HONO, FNO2, and N2O
,”
J. Mol. Spectrosc.
394
,
111788
(
2023
).
19.
M.
Piccardo
,
E.
Penocchio
,
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
, “
Semi-experimental equilibrium structure determinations by employing B3LYP/SNSD anharmonic force fields: Validation and application to semirigid organic molecules
,”
J. Phys. Chem. A
119
(
10
),
2058
2082
(
2015
).
20.
M. A.
Zdanovskaia
,
B. J.
Esselman
,
S. M.
Kougias
,
B. K.
Amberger
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Precise equilibrium structures of 1H- and 2H-1,2,3-triazoles (C2H3N3) by millimeter-wave spectroscopy
,”
J. Chem. Phys.
157
(
8
),
084305
(
2022
).
21.
C.
Puzzarini
,
J.
Bloino
,
N.
Tasinato
, and
V.
Barone
, “
Accuracy and interpretability: The devil and the holy grail. New routes across old boundaries in computational spectroscopy
,”
Chem. Rev.
119
(
13
),
8131
8191
(
2019
).
22.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
, “
Coupled-cluster techniques for computational chemistry: The CFOUR program package
,”
J. Chem. Phys.
152
(
21
),
214108
(
2020
).
23.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
(
6
),
479
483
(
1989
).
24.
J.
Gauss
and
J. F.
Stanton
, “
Analytic CCSD(T) second derivatives
,”
Chem. Phys. Lett.
276
(
1–2
),
70
77
(
1997
).
25.
K. A.
Peterson
and
T. H.
Dunning
, “
Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited
,”
J. Chem. Phys.
117
(
23
),
10548
10560
(
2002
).
26.
N. J.
Deyonker
,
K. A.
Peterson
, and
A. K.
Wilson
, “
Systematically convergent correlation consistent basis sets for molecular Core–Valence correlation Effects: The third-row atoms gallium through krypton
,”
J. Phys. Chem. A
111
(
44
),
11383
11393
(
2007
).
27.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
, and
A. K.
Wilson
, “
Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg
,”
Theor. Chem. Acc.
128
(
1
),
69
82
(
2011
).
28.
J. G.
Hill
and
K. A.
Peterson
, “
Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K–Fr) and alkaline earth (Ca–Ra) elements
,”
J. Chem. Phys.
147
(
24
),
244106
(
2017
).
29.
Y. J.
Franzke
,
R.
Treß
,
T. M.
Pazdera
, and
F.
Weigend
, “
Error-consistent segmented contracted all-electron relativistic basis sets of double- and triple-zeta quality for NMR shielding constants
,”
Phys. Chem. Chem. Phys.
21
(
30
),
16658
16664
(
2019
).
30.
J.
Gauss
,
K.
Ruud
, and
T.
Helgaker
, “
Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors
,”
J. Chem. Phys.
105
(
7
),
2804
2812
(
1996
).
31.
J.
Gauss
,
K.
Ruud
, and
M.
Kállay
, “
Gauge-origin independent calculation of magnetizabilities and rotational g tensors at the coupled-cluster level
,”
J. Chem. Phys.
127
(
7
),
074101
(
2007
).
32.
K.
Ruud
,
P. O.
Åstrand
, and
P. R.
Taylor
, “
An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules
,”
J. Chem. Phys.
112
(
6
),
2668
2683
(
2000
).
33.
A. A.
Auer
,
J.
Gauss
, and
J. F.
Stanton
, “
Quantitative prediction of gas-phase 13C nuclear magnetic shielding constants
,”
J. Chem. Phys.
118
(
23
),
10407
10417
(
2003
).
34.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
2016
.
35.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
(
13
),
6158
6170
(
1999
).
36.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
37.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
(
7
),
1456
1465
(
2011
).
38.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
(
18
),
3297
3305
(
2005
).
39.
N. J.
Harrick
and
N. F.
Ramsey
, “
Rotational magnetic moment, magnetic susceptibilities, and electron distribution in the hydrogen molecule
,”
Phys. Rev.
88
(
2
),
228
232
(
1952
).
40.
W. E.
Quinn
,
J. M.
Baker
,
J. T.
LaTourrette
, and
N. F.
Ramsey
, “
Radio-frequency spectra of hydrogen deuteride in strong magnetic fields
,”
Phys. Rev.
112
(
6
),
1929
1940
(
1958
).
41.
R. G.
Barnes
,
P. J.
Bray
, and
N. F.
Ramsey
, “
Variations of hydrogen rotational magnetic moments with rotational quantum number and with isotopic mass
,”
Phys. Rev.
94
(
4
),
893
902
(
1954
).
42.
T. R.
Lawrence
,
C. H.
Anderson
, and
N. F.
Ramsey
, “
Rotational magnetic moments of lithium hydride and deuteride
,”
Phys. Rev.
130
(
5
),
1865
1870
(
1963
).
43.
S. M.
Bass
,
R. L.
DeLeon
, and
J. S.
Muenter
, “
Stark, Zeeman, and hyperfine properties of v = 0, v = 1, and the equilibrium configuration of hydrogen fluoride
,”
J. Chem. Phys.
86
(
8
),
4305
4312
(
1987
).
44.
C. A.
Burrus
, “
Zeeman effect in the 1- to 3-millimeter wave region: Molecular g factors of several light molecules
,”
J. Chem. Phys.
30
(
4
),
976
983
(
1959
).
45.
R. A.
Brooks
,
C. H.
Anderson
, and
N. F.
Ramsey
, “
Rotational magnetic moments of the alkali molecules
,”
Phys. Rev.
136
,
A62
A68
(
1964
).
46.
F.
Mehran
,
R. A.
Brooks
, and
N. F.
Ramsey
, “
Rotational magnetic moments of alkali-halide molecules
,”
Phys. Rev.
141
(
1
),
93
104
(
1966
).
47.
G.
Gräff
and
G.
Werth
, “
Gleichzeitige messung von hyperfeinstruktur, Starkeffekt und Zeemaneffekt des 23Na19F mit einer molekülstrahl-resonanzapparatur
,”
Z. Phys.
183
(
3
),
223
233
(
1965
).
48.
G.
Gräff
and
Ö.
Runolfsson
, “
Gleichzeitige messung von hyperfeinstruktur, Stark-effekt und Zeeman-effekt des 39K19F mit einer molekülstrahlresonanzapparatur
,”
Z. Phys.
176
(
1
),
90
114
(
1963
).
49.
J. J.
Ewing
,
H. L.
Tigelaar
, and
W. H.
Flygare
, “
Molecular Zeeman effect, magnetic properties, and electric quadrupole moments in ClF, BrF, ClCN, BrCN, and ICN
,”
J. Chem. Phys.
56
(
5
),
1957
1966
(
1972
).
50.
I.
Ozier
,
P.
Yi
,
A.
Khosla
, and
N. F.
Ramsey
, “
Sign and magnitude of the rotational moment of 12C16O
,”
J. Chem. Phys.
46
(
4
),
1530
(
1967
).
51.
B.
Rosenblum
,
A. H.
Nethercot
, and
C. H.
Townes
, “
Isotopic mass ratios, magnetic moments and the sign of the electric dipole moment in carbon monoxide
,”
Phys. Rev.
109
(
2
),
400
412
(
1958
).
52.
W. L.
Meerts
,
F. H.
De Leeuw
, and
A.
Dymanus
, “
Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy
,”
Chem. Phys.
22
(
2
),
319
324
(
1977
).
53.
B.
Wang
and
T. A.
Keiderling
, “
Rotational Zeeman effect in carbon monoxide as determined by magnetic vibrational circular dichroism
,”
J. Chem. Phys.
98
(
2
),
903
911
(
1993
).
54.
S. I.
Chan
,
M. R.
Baker
, and
N. F.
Ramsey.
, “
Molecular-beam magnetic-resonance studies of the nitrogen molecule
,”
Phys. Rev.
136
(
5A
),
A1224
A1228
(
1964
).
55.
W. H.
Flygare
,
R. L.
Shoemaker
, and
W.
Hüttner
, “
Magnetic-susceptibility anisotropy, molecular g value, and molecular quadrupole moment of 15N15N16O
,”
J. Chem. Phys.
50
(
6
),
2414
2416
(
1969
).
56.
I.
Ozier
,
L. M.
Crapo
,
J. W.
Cederberg
, and
N. F.
Ramsey.
, “
Nuclear interactions and rotational moment of F2
,”
Phys. Rev. Lett.
13
(
15
),
482
484
(
1964
).
57.
R.
Honerjäger
and
R.
Tischer
, “
Zeeman-effekt im mikrowellenrotationsspektrum der AlF-molekel/Zeeman effect in the microwave rotational spectrum of the AIF molecule
,”
Z. Naturforsch., A
29
(
2
),
342
345
(
1974
).
58.
J.
McGurk
,
H. L.
Tigelaar
,
S. L.
Rock
,
C. L.
Norris
, and
W. H.
Flygare
, “
Detection, assignment of the microwave spectrum and the molecular Stark and Zeeman effects in CSe, and the Zeeman effect and sign of the dipole moment in CS
,”
J. Chem. Phys.
58
(
4
),
1420
1424
(
1973
).
59.
S.
Gustafson
and
W.
Gordy
, “
Magnetic-susceptibility anisotropy of CO and CS
,”
J. Chem. Phys.
52
(
2
),
579
580
(
1970
).
60.
E. F.
Pearson
,
C. L.
Norris
, and
W. H.
Flygare
, “
Molecular Zeeman effect, electric dipole moment, and boron nuclear hyperfine coupling constants in HBS
,”
J. Chem. Phys.
60
(
5
),
1761
1764
(
1974
).
61.
S. L.
Hartford
,
W. C.
Allen
,
C. L.
Norris
,
E. F.
Pearson
, and
W. H.
Flygare
, “
The molecular Zeeman effect in HCP, HCN, and HCCBr and a comparison with similar molecules
,”
Chem. Phys. Lett.
18
(
2
),
153
157
(
1973
).
62.
S. L.
Rock
,
J. C.
McGurk
, and
W. H.
Flygare
, “
The molecular Zeeman effect in F12C15N
,”
Chem. Phys. Lett.
19
(
2
),
153
155
(
1973
).
63.
J. M. L. J.
Reinartz
,
W. L.
Meerts
, and
A.
Dymanus
, “
Molecular-beam electric-resonance study of cyanogen chloride (ClCN)
,”
Chem. Phys.
45
(
3
),
387
392
(
1980
).
64.
J. W.
Cederberg
,
C. H.
Anderson
, and
N. F.
Ramsey
, “
Rotational magnetic moments
,”
Phys. Rev.
136
(
4A
),
A960
A961
(
1964
).
65.
F. H.
De Leeuw
and
A.
Dymanus
, “
Electric and magnetic properties of OCS measured by molecular-beam electric-resonance spectroscopy
,”
Chem. Phys. Lett.
7
(
2
),
288
292
(
1970
).
66.
R. L.
Shoemaker
and
W. H.
Flygare
, “
Molecular g-value, magnetic susceptibility anisotropy, and molecular quadrupole moment in OCSe
,”
Chem. Phys. Lett.
6
(
6
),
576
578
(
1970
).
67.
A.
Klesing
and
D. H.
Sutter
, “
The rotational Zeeman effect of carbonylselenide, OCSe, its molecular electric quadrupole moment, and the effects of the C = Se stretching and the bending vibration; a high resolution microwave fourier transform study
,”
Z. Naturforsch., A
48
(
10
),
968
986
(
1993
).
68.
R. L.
Shoemaker
and
W. H.
Flygare
, “
Magnetic susceptibility anisotropy and molecular quadrupole moment of fluoroacetylene
,”
Chem. Phys. Lett.
2
(
8
),
610
612
(
1968
).
69.
W. C.
Allen
and
W. H.
Flygare
, “
Molecular g-value, magnetic susceptibility anisotropy, molecular quadrupole moment, and sign of the electric dipole moment in chloroacetylene
,”
Chem. Phys. Lett.
15
(
3
),
461
463
(
1972
).
70.
C. H.
Anderson
and
N. F.
Ramsey
, “
Magnetic resonance molecular-beam spectra of methane
,”
Phys. Rev.
149
(
1
),
14
24
(
1966
).
71.
S. G.
Kukolich
and
W. H.
Flygare
, “
Molecular g values, magnetic susceptibilities, molecular quadrupole moment, and spin-rotation interaction in 15NH3
,”
Mol. Phys.
17
(
2
),
127
133
(
1969
).
72.
W.
Hüttner
,
U. E.
Frank
,
W.
Majer
,
K.
Mayer
, and
V.
Špirko
, “
The v2 = 1 inversional dependence of the rotational g-tensors in 14NH3, 15NH3, and 15ND3
,”
Mol. Phys.
64
(
6
),
1233
1249
(
1988
).
73.
S. G.
Kukolich
and
W. H.
Flygare
, “
The molecular Zeeman effect in PH2D and PHD2 and the molecular g-values, magnetic susceptibilities, and molecular quadrupole moment in PH3
,”
Chem. Phys. Lett.
7
(
1
),
43
46
(
1970
).
74.
R. G.
Stone
,
J. M.
Pochan
, and
W. H.
Flygare
, “
Zeeman studies including the molecular g values, magnetic susceptibilities, and molecular quadrupole moments in phosphorus and nitrogen trifluorides and phosphoryl, thionyl, and sulfuryl fluorides
,”
Inorg. Chem.
8
(
12
),
2647
2655
(
1969
).
75.
C. L.
Norris
,
E. F.
Pearson
, and
W. H.
Flygare
, “
Molecular Zeeman effect in methyl fluoride
,”
J. Chem. Phys.
60
(
5
),
1758
1760
(
1974
).
76.
D. L.
Vanderhart
and
W. H.
Flygare
, “
The molecular Zeeman effect in CH3Cl, CH3Br and CH3I
,”
Mol. Phys.
18
(
1
),
77
93
(
1970
).
77.
A. W.
Ellenbroek
and
A.
Dymanus
, “
Molecular Zeeman effect in fluoroform and methyl chloride by beam maser spectroscopy
,”
Chem. Phys.
35
(
1–2
),
227
238
(
1978
).
78.
J. M.
Pochan
,
R. L.
Shoemaker
,
R. G.
Stone
, and
W. H.
Flygare
, “
Molecular g values, magnetic susceptibility anisotropies, diamagnetic and paramagnetic susceptibilities, second moment of the charge distribution, and molecular quadrupole moments of H3CCN and H3CNC
,”
J. Chem. Phys.
52
(
5
),
2478
2484
(
1970
).
79.
R. L.
Shoemaker
and
W. H.
Flygare
, “
Magnetic susceptibility anisotropy, molecular quadrupole moment, molecular g values, and the sign of the electric dipole moment in methylacetylene
,”
J. Am. Chem. Soc.
91
(
20
),
5417
5421
(
1969
).
80.
R. L.
Shoemaker
and
W. H.
Flygare
, “
Molecular magnetic moments, magnetic susceptibility anisotropy, molecular quadrupole moment, and sign of the electric dipole moment in methylsilane
,”
J. Am. Chem. Soc.
94
(
2
),
684
686
(
1972
).
81.
J.
Verhoeven
and
A.
Dymanus
, “
Magnetic properties and molecular quadrupole tensor of the water molecule by beam-maser Zeeman spectroscopy
,”
J. Chem. Phys.
52
(
6
),
3222
3233
(
1970
).
82.
S. G.
Kukolich
, “
Measurement of the molecular g values in H2O and D2O and hyperfine structure in H2O
,”
J. Chem. Phys.
50
(
9
),
3751
3755
(
1969
).
83.
S. L.
Rock
,
E. F.
Pearson
,
E. H.
Appleman
,
C. L.
Norris
, and
W. H.
Flygare
, “
Molecular rotational Zeeman effect in HOF, a comparison with H2O, F2O, and other fluorine containing molecules; and dipole moments of HOF and DOF
,”
J. Chem. Phys.
59
(
8
),
3940
3945
(
1973
).
84.
W. I.
Meerts
,
S.
Stolte
, and
A.
Dymanus
, “
Electric and magnetic properties of ozone by molecular beam electric resonance spectroscopy
,”
Chem. Phys.
19
(
3
),
467
472
(
1977
).
85.
J. M.
Pochan
,
R. G.
Stone
, and
W. H.
Flygare
, “
Molecular g values, magnetic susceptibilities, molecular quadrupole moments, and second moments of the electronic charge distribution in OF2, O3, and SO2
,”
J. Chem. Phys.
51
(
10
),
4278
4286
(
1969
).
86.
K. M.
Mack
and
J. S.
Muenter
, “
Stark and Zeeman properties of ozone from molecular beam spectroscopy
,”
J. Chem. Phys.
66
(
12
),
5278
5283
(
1977
).
87.
A. W.
Ellenbroek
and
A.
Dymanus
, “
Zeeman effect in SO2 by beam maser Zeeman spectroscopy
,”
Chem. Phys. Lett.
42
(
2
),
303
306
(
1976
).
88.
S. L.
Rock
,
J. K.
Hancock
, and
W. H.
Flygare
, “
Molecular g values, magnetic susceptibility anisotropies, molecular quadrupole moments, diamagnetic and paramagnetic susceptibilities, and the second moment of the electronic charge distribution in CHFO, CH2CHF, CF2CHF, CH3CH2F, and CH3CHF2
,”
J. Chem. Phys.
54
(
8
),
3450
3463
(
1971
).
89.
W. H.
Flygare
, “
Molecular magnetic moments and susceptibility in formaldehyde
,”
J. Chem. Phys.
42
(
5
),
1563
1568
(
1965
).
90.
W.
Hüttner
,
M.-K.
Lo
, and
W. H.
Flygare
, “
Molecular g-value tensor, the molecular susceptibility tensor, and the sign of the electric dipole moment in formaldehyde
,”
J. Chem. Phys.
48
(
3
),
1206
1220
(
1968
).
91.
S. L.
Rock
and
W. H.
Flygare
, “
Molecular rotational Zeeman effect in thioformaldehyde
,”
J. Chem. Phys.
56
(
10
),
4723
4728
(
1972
).
92.
S. G.
Kukolich
and
W. H.
Flygare
, “
Molecular g values, magnetic suceptibility anisotropies, second moment of the charge distribution, and molecular quadrupole moments in formic acid
,”
J. Am. Chem. Soc.
91
(
10
),
2433
2437
(
1969
).
93.
R. P.
Blickensderfer
,
J. H. S.
Wang
, and
W. H.
Flygare
, “
Molecular g values, magnetic susceptibility anisotropies, molecular quadrupole moments, and the second moment of the electronic charge distribution in OCF2, CH2CF2, cis-CHFCHF, and CH2F2
,”
J. Chem. Phys.
51
(
8
),
3196
3205
(
1969
).
94.
W.
Majer
,
P.
Lutzmann
, and
W.
Hüttner
, “
The molecular electric quadrupole tensor of ethene from the rotational Zeeman effect of CH2=CD2
,”
Mol. Phys.
83
(
3
),
567
578
(
1994
).
95.
D. H.
Sutter
and
W. H.
Flygare
, “
The molecular g values, magnetic susceptibility anisotropies, and the molecular quadrupole moments in ethylene sulphide
,”
Mol. Phys.
16
(
2
),
153
164
(
1969
).
96.
D. H.
Sutter
,
W.
Hüttner
, and
W. H.
Flygare
, “
Molecular g values, magnetic susceptibility anisotropies, and molecular quadrupole moments in ethylene oxide
,”
J. Chem. Phys.
50
(
7
),
2869
2874
(
1969
).
97.
W.
Hüttner
,
P. D.
Foster
, and
W. H.
Flygare
, “
Molecular g values, magnetic susceptibility anisotropies, and molecular quadrupole moments in ketene
,”
J. Chem. Phys.
50
(
4
),
1710
1713
(
1969
).
98.
M.-K.
Lo
,
P. D.
Foster
, and
W. H.
Flygare
, “
Molecular g values and paramagnetic susceptibility of ketene
,”
J. Chem. Phys.
48
(
2
),
948
950
(
1968
).
99.
K.
Takagi
,
S.
Tsunekawa
,
K.
Kobayashi
,
T.
Hirota
, and
F.
Matsushima
, “
Microwave Zeeman effect of methanol
,”
J. Mol. Spectrosc.
377
,
111420
(
2021
).
100.
R. C.
Benson
and
W. H.
Flygare
, “
Molecular g values, magnetic susceptibilities, molecular quadrupole moments, and sign of the electric dipole moment in cyclopropene
,”
J. Chem. Phys.
51
(
7
),
3087
3096
(
1969
).
101.
R. C.
Benson
and
W. H.
Flygare
, “
The molecular Zeeman effect in propene and comparison of the magnetic susceptibility anisotropies with cyclopropene and other small ring compounds
,”
Chem. Phys. Lett.
4
(
3
),
141
143
(
1969
).
102.
R. C.
Benson
and
W. H.
Flygare
, “
Molecular Zeeman effect of 1-methylcyclopropene
,”
J. Chem. Phys.
58
(
6
),
2651
2652
(
1973
).
103.
R. C.
Benson
and
W. H.
Flygare
, “
Molecular Zeeman effect of cyclobutene, methylene cyclopropane, and methylene cyclobutane
,”
J. Chem. Phys.
53
(
12
),
4470
4478
(
1970
).
104.
R. C.
Benson
,
W. H.
Flygare
,
M.
Oda
, and
R.
Breslow
, “
Microwave spectrum, substitutional structure, and Stark and Zeeman effects in cyclopropenone
,”
J. Am. Chem. Soc.
95
(
9
),
2772
2777
(
1973
).
105.
C. L.
Norris
,
H. L.
Tigelaar
, and
W. H.
Flygare
, “
Molecular Zeeman effect of 3-oxetanone and 3-methylene oxetane, and the comparison of the magnetic-susceptibility anisotropies, molecular quadrupole moments, and other magnetic parameters with other four-membered rings
,”
Chem. Phys.
1
(
1
),
1
8
(
1973
).
106.
R. C.
Benson
,
R. S.
Scott
, and
W. H.
Flygare
, “
Molecular g values, magnetic susceptibility anisotropies, and molecular quadrupole moments in propynal
,”
J. Phys. Chem.
73
(
12
),
4359
4363
(
1969
).
107.
R. C.
Benson
and
W. H.
Flygare
, “
The molecular Zeeman effect of vinylene carbonate, maleic anhydride, acrolein and the benzene isomers, 3,4-dimethylenecyclobutene and fulvene
,”
J. Chem. Phys.
58
(
6
),
2366
2372
(
1973
).
108.
D. H.
Sutter
and
W. H.
Flygare
, “
Molecular g values, magnetic susceptibility anisotropies, second moment of the charge distribution, and molecular quadrupole moments in ethylenimine and pyrrole
,”
J. Am. Chem. Soc.
91
(
25
),
6895
6902
(
1969
).
109.
W.
Hüttner
and
W. H.
Flygare
, “
Molecular g-values, magnetic susceptibility anisotropies, second moment of the charge distribution, and molecular quadrupole moments in acetaldehyde
,”
Trans. Faraday Soc.
65
,
1953
1962
(
1969
).
110.
R. C.
Benson
and
W. H.
Flygare
, “
Molecular Zeeman effect of dimethyl ether and dimethyl sulfide; and comparison of the magnetic susceptibility anisotropies with ethylene sulfide and ethylene oxide
,”
J. Chem. Phys.
52
(
10
),
5291
5298
(
1970
).
111.
R. C.
Benson
,
H. L.
Tigelaar
,
S. L.
Rock
, and
W. H.
Flygare
, “
Molecular Zeeman effect of trimethylene oxide and trimethylene sulfide
,”
J. Chem. Phys.
52
(
11
),
5628
5635
(
1970
).
112.
J. H. S.
Wang
and
W. H.
Flygare
, “
Molecular Zeeman effect and the determination of the molecular magnetic moments (g values), magnetic susceptibilities, and molecular quadrupole moments in methyl formate and glycolaldehyde
,”
J. Chem. Phys.
53
(
12
),
4479
4485
(
1970
).
113.
R. G.
Stone
,
H. L.
Tigelaar
, and
W. H.
Flygare
, “
Molecular quadrupole moments of SF4
,”
J. Chem. Phys.
53
(
10
),
3947
3950
(
1970
).
114.
D. H.
Sutter
and
W. H.
Flygare
, “
Molecular g values, magnetic susceptibility anisotropies, second moment of the charge distribution, and molecular quadrupole moments in furan and thiophene
,”
J. Am. Chem. Soc.
91
(
15
),
4063
4068
(
1969
).
115.
H. L.
Tigelaar
and
W. H.
Flygare
, “
Molecular Zeeman effect in formamide and the α-proton chemical shift in poly(L-alanine)
,”
J. Am. Chem. Soc.
94
(
2
),
343
346
(
1972
).
116.
H.
Krause
and
D. H.
Sutter
, “
The molecular Zeeman effect of imines. I. Methanimine, its molecular g-tensor, its magnetic susceptibility anisotropies, its molecular electric quadrupole moment, its electric field gradient at the nitrogen nucleus, and its nitrogen spin-rotation coupling
,”
Z. Naturforsch., A
44
(
11
),
1063
1078
(
1989
).
117.
H. L.
Tigelaar
and
W. H.
Flygare
, “
Molecular Zeeman effect of cyclobutanone
,”
J. Chem. Phys.
53
(
10
),
3943
3946
(
1970
).
118.
W. H.
Flygare
and
R. C.
Benson
, “
Molecular Zeeman effect of cyclopentadiene and isoprene and comparison of the magnetic susceptibility anisotropies
,”
J. Am. Chem. Soc.
92
(
26
),
7523
7529
(
1970
).
119.
D. H. D.
West
, “
Updating mean and variance estimates: An improved method
,”
Commun. ACM
22
(
9
),
532
535
(
1979
).
120.
F.
Michel Dekking
,
C.
Kraaikamp
,
H. P.
Lopuhaä
, and
L.
Erwin Meester
,
A Modern Introduction to Probability and Statistics
(
Springer
,
London
,
2005
).
121.
E. B.
Wang
,
C. A.
Parish
, and
H.
Lischka
, “
An extended multireference study of the electronic states of para-benzyne
,”
J. Chem. Phys.
129
(
4
),
044306
(
2008
).
122.
K.
Ohno
,
H.
Matsuura
,
Y.
Endo
, and
E.
Hirota
, “
The microwave spectra of deuterated silanes, germanes, and stannanes
,”
J. Mol. Spectrosc.
118
(
1
),
1
17
(
1986
).

Supplementary Material

You do not currently have access to this content.