Orbital-Free Density-Functional Theory (OF-DFT) is known to represent a promising alternative to the standard Kohn-Sham (KS) DFT, as it relies on the electron density alone, without the need to calculate all KS single-particle orbitals and energies. Here, we investigate the behavior of the main ingredients of this theory, which are the non-interacting kinetic-energy density (KED) and the Pauli potential, for metal slabs. We derive explicit density functionals for these quantities in the quantum limit where all electrons are in the same slab discrete level of energy, and we present numerical calculations beyond this quantum limit for slabs of various widths. We have found the first explicit KED functional for a realistic many-particle fermionic system, which we prove to be generally valid with no assumption about the KS potential. We also discuss the total non-interacting kinetic energy and the corresponding enhancement factor, which represent basic quantities for the practical implementation of OF-DFT.

1.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory: An Approach to the Quantum Many-Body Problem
(
Springer-Verlag
,
Berlin
,
1990
).
2.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
1994
).
3.
E.
Engel
and
R. M.
Dreizler
,
Density Functional Theory: An Advanced Course
(
Springer
,
Berlin
,
2011
).
4.
W.
Mi
,
K.
Luo
,
S. B.
Trickey
, and
M.
Pavanello
, “
Orbital-free density functional theory: An attractive structure method for large-scale first-principles simulations
,”
Chem. Rev.
(in press) (
2023
).
5.
M.
Levy
,
J. P.
Perdew
, and
V.
Sahni
, “
Exact differential equation for the density and ionization energy of a many-particle system
,”
Phys. Rev. A
30
,
2745
(
1984
).
6.
S.
Śmiga
,
S.
Siecińska
, and
E.
Fabiano
, “
Methods to generate reference total and Pauli kinetic potentials
,”
Phys. Rev. B
101
,
165144
(
2020
).
7.
E.
Kraisler
and
A.
Schild
, “
Discontinuous behavior of the Pauli potential in density functional theory as a function of the electron number
,”
Phys. Rev. Res.
2
,
013159
(
2020
).
8.
R. T.
Sharp
and
G. K.
Horton
, “
A variational approach to the unipotential many-electron problem
,”
Phys. Rev.
90
,
317
(
1953
).
9.
J. D.
Talman
and
W. F.
Shadwick
, “
Optimized effective atomic central potential
,”
Phys. Rev. A
14
,
36
(
1976
).
10.
T.
Grabo
,
J.
Kreibich
,
S.
Kurth
, and
E. K. U.
Gross
, in
Strong Coulomb Interactions in Electronic Structure Calculations: Beyond the Local Density Approximation
, edited by
V. I.
Anisimov
(
Gordon & Breach
,
Amsterdam
,
2000
).
11.
S.
Kümmel
and
L.
Kronik
,
Rev. Mod. Phys.
80
,
3
(
2008
).
12.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
(
1982
).
13.
The factorization of the three-dimensional wave function in Eq. (3) is valid only for the case of a local potential, which is the case of the KS implementation of DFT. In the Hartree-Fock (HF) approximation, however, the nonlocality of the Fock potential introduces a coupling between the quantum numbers k and i. A thorough comparison of the HF and KS exchange potential, as applied to jellium slabs, was given elsewhere.37 
14.
H.
Luo
,
C. M.
Horowitz
,
H.-J.
Flad
,
C. R.
Proetto
, and
W.
Hackbusch
, “
Direct comparison of optimized effective potential and Hartree-Fock self-consistent calculations for jellium slabs
,”
Phys. Rev. B
85
,
165133
(
2012
).
15.
C. M.
Horowitz
,
C. R.
Proetto
, and
S.
Rigamonti
, “
Kohn-Sham exchange potential for a metallic surface
,”
Phys. Rev. Lett.
97
,
026802
(
2006
).
16.
The analytical results presented here do not depend on the actual choice of the KS potential. We also find that the numerical results presented here are not sensitive to whether the KS potential is evaluated at the exact-exchange or LDA level.
17.
C.
Horowitz
,
C. R.
Proetto
, and
J. M.
Pitarke
, “
Asymptotics of the metal-surface Kohn-Sham exact exchange potential revisited
,”
Phys. Rev. B
104
,
155108
(
2021
), See Eq. (7).
18.
C. M.
Horowitz
,
C. R.
Proetto
, and
J. M.
Pitarke
, “
Exact-exchange Kohn-Sham potential, surface energy, and work function of jellium slabs
,”
Phys. Rev. B
78
,
085126
(
2008
).
19.
C. M.
Horowitz
,
L. A.
Constantin
,
C. R.
Proetto
, and
J. M.
Pitarke
, “
Position-dependent exact-exchange energy for slabs and semi-infinite jellium
,”
Phys. Rev. B
80
,
235101
(
2009
).
20.
M.
Levy
and
H.
Ou-Yang
, “
Exact properties of the Pauli potential for the square root of the electron density and the kinetic energy functional
,”
Phys. Rev. A
38
,
625
(
1988
).
21.
C. M.
Horowitz
,
C. R.
Proetto
, and
J. M.
Pitarke
, “
Semilocal approximations to the Kohn-Sham exchange potential as applied to a metal surface
,”
Phys. Rev. B
105
,
085149
(
2022
).
22.
The 3D Seitz radius rs is given by rs=(3/4πn̄)1/3, in units of the Bohr radius a0, with n̄ being the uniform density of the jellium background.
23.
S.
Kurth
,
J. P.
Perdew
, and
P.
Blaha
, “
Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs
,”
Int. J. Quantum Chem.
75
,
889
(
1999
).
24.
A. D.
Kaplan
,
K.
Wagle
, and
J. P.
Perdew
, “
Collapse of the electron gas from three to two dimensions in Kohn-Sham density functional theory
,”
Phys. Rev. B
98
,
085147
(
2018
).
25.
J. M.
Pitarke
and
A. G.
Eguiluz
, “
Jellium surface energy beyond the local-density approximation: Self-consistent-field calculations
,”
Phys. Rev. B
63
,
045116
(
2001
).
26.
V. V.
Karasiev
,
R. S.
Jones
,
S. B.
Trickey
, and
F. E.
Harris
, “
Properties of constraint-based single-point approximate kinetic energy functionals
,”
Phys. Rev. B
80
,
245120
(
2009
).
27.
J. P.
Perdew
and
L. A.
Constantin
, “
Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy
,”
Phys. Rev. B
75
,
155109
(
2007
).
28.
J.
Xia
and
E. A.
Carter
, “
Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation
,”
Phys. Rev. B
91
,
045124
(
2015
).
29.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
, “
Modified fourth-order kinetic energy gradient expansion with Hartree potential-dependent coefficients
,”
J. Chem. Theory Comput.
13
,
4228
(
2017
).
30.
C.
Horowitz
,
C. R.
Proetto
, and
J. M.
Pitarke
, “
Towards a universal exchange enhancement factor in density functional theory
,”
Phys. Rev. B
107
,
195120
(
2023
).
31.
C.
Horowitz
,
C. R.
Proetto
, and
J. M.
Pitarke
, “
Construction of a semilocal exchange density functional from a three-dimensional electron gas collapsing to two dimensions
,”
Phys. Rev. B
108
,
115119
(
2023
).
32.
E. H.
Lieb
,
Some Open Problems about Coulomb Systems
,
Lecture Notes in Physics Vol. 116
(
Springer
,
1980
), p.
91
.
33.
J. L.
Gázquez
and
J.
Robles
, “
On the atomic kinetic energy functionals with full Weizsacker correction
,”
J. Chem. Phys.
76
,
1467
(
1982
).
34.
J.
Wrighton
,
A.
Albavera-Mata
,
H. F.
Rodríguez
,
T. S.
Tan
,
A. C.
Cancio
,
J. W.
Dufty
, and
S. B.
Trickey
, “
Some problems in density functional theory
,”
Lett. Math. Phys.
113
,
41
(
2023
).
35.
J. S. M.
Anderson
,
P. W.
Ayers
, and
J. I. R.
Hernandez
, “
How ambiguous is the local kinetic energy
,”
J. Phys. Chem. A
114
,
8884
(
2010
).
36.
K.
Luo
,
V. V.
Karasiev
, and
S. B.
Trickey
, “
A simple generalized gradient approximation for the non-interacting kinetic energy density functional
,”
Phys. Rev. B
98
,
041111(R)
(
2018
).
37.
L. A.
Constantin
, “
Semilocal properties of the Pauli kinetic potential
,”
Phys. Rev. B
99
,
155137
(
2019
).
38.
S.
Rigamonti
and
C. R.
Proetto
, “
Signatures of discontinuity in the exchange-correlation energy functional derived from the subband electronic structure of semiconductor quantum wells
,”
Phys. Rev. Lett.
98
,
066806
(
2007
).
39.
G. F.
Giuliani
and
G.
Vignale
,
Quantum Theory of the Electron Liquid
(
Cambridge University Press
,
Cambridge
,
2005
).
You do not currently have access to this content.