Accurate Force Fields (FFs) are essential for Molecular Dynamics (MD) simulations of the dynamics of realistic materials in terms of atomic-level interactions. The FF parameters of short-range valence interactions can be derived through Quantum Mechanical (QM) calculations on model systems practical for QM (<300 atoms). Similarly, the dynamic electrostatic interactions can be described with methods such as QEq or PQEq that allow charges and polarization to adjust dynamically. However, accurately extracting long-range van der Waals (vdW) interactions from QM calculations poses challenges due to the absence of a definitive method to distinguish between the different energetic components of electrostatics, polarization, vdW, hydrogen bonding, and valence interactions. To do this we use the Perdew–Burke–Ernzerhof flavor of Density Functional Theory, including empirical D3 vdW corrections, to predict the Equation of State for each element (keeping any covalent bonds fixed), from which we obtain the two-body vdW nonbond potential. Here, we extend these calculations to include non-bonded parameters for the N and O columns of the periodic table so that we now describe columns 15 (N), 16 (O), 17 (F), and 18 (Ne) of the periodic table. For these 20 elements, we find that the two-body vdW potentials can all be mapped to a single universal two-body curve, with just three scaling parameters: Re, De, and L. We refer to this as the Universal NonBond (UNB) potential. We expect this to be useful for new MD simulations and a helpful starting point to obtain UNB parameters for the remainder of the periodic table.

1.
Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile
, edited by
S.
Shankar
,
R.
Muller
,
T.
Dunning
, and
G. H.
Chen
(
Springer International Publishing
,
Cham
,
2021
).
2.
S. A.
Hollingsworth
and
R. O.
Dror
, “
Molecular dynamics simulation for all
,”
Neuron
99
(
6
),
1129
1143
(
2018
).
3.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in 't Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
,
S. J.
Plimpton
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
4.
P.
Geng
and
P. S.
Branicio
, “
Atomistic insights on the pressure-induced multi-layer graphene to diamond-like structure transformation
,”
Carbon
175
,
243
253
(
2021
).
5.
K. E.
Gubbins
,
Y.-C.
Liu
,
J. D.
Moore
, and
J. C.
Palmer
, “
The role of molecular modeling in confined systems: Impact and prospects
,”
Phys. Chem. Chem. Phys.
13
(
1
),
58
85
(
2011
).
6.
B.
Mennucci
and
S.
Corni
, “
Multiscale modelling of photoinduced processes in composite systems
,”
Nat. Rev. Chem
3
(
5
),
315
330
(
2019
).
7.
V. L.
Deringer
, “
Modelling and understanding battery materials with machine-learning-driven atomistic simulations
,”
J. Phys.: Energy
2
(
4
),
041003
(
2020
).
8.
M. F.
Langer
,
A.
Goeßmann
, and
M.
Rupp
, “
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
,”
npj Comput. Mater.
8
(
1
),
41
(
2022
).
9.
R.
Car
and
M.
Parrinello
, “
Unified approach for molecular dynamics and density-functional theory
,”
Phys. Rev. Lett.
55
(
22
),
2471
2474
(
1985
).
10.
P.
Gao
,
X.
Duan
,
T.
Zhang
,
M.
Zhang
,
B.
Schmidt
,
X.
Zhang
,
H.
Sun
,
W.
Zhang
,
L.
Gan
,
W.
Xue
,
H.
Fu
,
W.
Liu
, and
G.
Yang
, “
Millimeter-scale and billion-atom reactive force field simulation on sunway taihulight
,”
IEEE Trans. Parallel Distributed Syst.
31
(
12
),
2954
2967
(
2020
).
11.
K.
Nguyen-Cong
,
J. T.
Willman
,
S. G.
Moore
,
A. B.
Belonoshko
,
R.
Gayatri
,
E.
Weinberg
,
M. A.
Wood
,
A. P.
Thompson
, and
I. I.
Oleynik
, in
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(
ACM
,
New York
,
2021
), pp.
1
12
.
12.
Z.
Guo
,
D.
Lu
,
Y.
Yan
,
S.
Hu
,
R.
Liu
,
G.
Tan
,
N.
Sun
,
W.
Jiang
,
L.
Liu
,
Y.
Chen
,
L.
Zhang
,
M.
Chen
,
H.
Wang
, and
W.
Jia
, in
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(
ACM
,
New York
,
2022
), pp.
205
218
.
13.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
(
19
),
5179
5197
(
1995
).
14.
Z.
Jing
,
C.
Liu
,
S. Y.
Cheng
,
R.
Qi
,
B. D.
Walker
,
J.-P.
Piquemal
, and
P.
Ren
, “
Polarizable force fields for biomolecular simulations: Recent advances and applications
,”
Annu. Rev. Biophys.
48
(
1
),
371
394
(
2019
).
15.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
III
, “
ReaxFF: A reactive force field for hydrocarbons
,”
J. Phys. Chem. A
105
(
41
),
9396
9409
(
2001
).
16.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
17.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
(
7
),
1456
1465
(
2011
).
18.
S.
Naserifar
,
J. J.
Oppenheim
,
H.
Yang
,
T.
Zhou
,
S.
Zybin
,
M.
Rizk
, and
W. A.
Goddard
III
, “
Accurate non-bonded potentials based on periodic quantum mechanics calculations for use in molecular simulations of materials and systems
,”
J. Chem. Phys.
151
(
15
),
154111
(
2019
).
19.
J. E.
Lennard-Jones
, “
Cohesion
,”
Proc. Phys. Soc.
43
(
5
),
461
482
(
1931
).
20.
S.
Stephan
,
J.
Staubach
, and
H.
Hasse
, “
Review and comparison of equations of state for the Lennard-Jones fluid
,”
Fluid Phase Equilib.
523
,
112772
(
2020
).
21.
J. P.
Dahl
and
M.
Springborg
, “
The Morse oscillator in position space, momentum space, and phase space
,”
J. Chem. Phys.
88
(
7
),
4535
4547
(
1988
).
22.
L. A.
Girifalco
and
V. G.
Weizer
, “
Application of the Morse potential function to cubic metals
,”
Phys. Rev.
114
(
3
),
687
690
(
1959
).
23.
N.
Swindells
and
C.
Sykes
, “
The classical equation of state of gaseous helium, neon and argon
,”
Proc. R. Soc. London, Ser. A
168
(
933
),
264
283
(
1938
).
24.
Y. P.
Varshni
, “
Comparative study of potential energy functions for diatomic molecules
,”
Rev. Mod. Phys.
29
(
4
),
664
682
(
1957
).
25.
A.
Brown
and
S.
Rundqvist
, “
Refinement of the crystal structure of black phosphorus
,”
Acta Crystallogr.
19
(
4
),
684
685
(
1965
).
26.
D.
Schiferl
and
C. S.
Barrett
, “
The crystal structure of arsenic at 4.2, 78 and 299° K
,”
J. Appl. Crystallogr.
2
(
1
),
30
36
(
1969
).
27.
C. S.
Barrett
,
P.
Cucka
, and
K.
Haefner
, “
The crystal structure of antimony at 4.2, 78 and 298° K
,”
Acta Crystallogr.
16
(
6
),
451
453
(
1963
).
28.
P.
Cucka
and
C. S.
Barrett
, “
The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi
,”
Acta Crystallogr.
15
(
9
),
865
872
(
1962
).
29.
L.
Zhu
,
Z.
Wang
,
Y.
Wang
,
G.
Zou
,
H.
Mao
, and
Y.
Ma
, “
Spiral chain O4 form of dense oxygen
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
3
),
751
753
(
2012
).
30.
W. A.
Crichton
,
G. B. M.
Vaughan
, and
M.
Mezouar
, “
In situ structure solution of helical sulphur at 3 GPa and 400 oC
,”
Z. Kristallogr. - Cryst. Mater.
216
(
8
),
417
419
(
2001
).
31.
R.
Keller
,
W. B.
Holzapfel
, and
H.
Schulz
, “
Effect of pressure on the atom positions in Se and Te
,”
Phys. Rev. B
16
(
10
),
4404
4412
(
1977
).
32.
C.
Adenis
,
V.
Langer
, and
O.
Lindqvist
, “
Reinvestigation of the structure of tellurium
,”
Acta Crystallogr., Sect. C: Struct. Chem.
45
(
6
),
941
942
(
1989
).
33.
B. M.
Powell
,
K. M.
Heal
, and
B. H.
Torrie
, “
The temperature dependence of the crystal structures of the solid halogens, bromine and chlorine
,”
Mol. Phys.
53
(
4
),
929
939
(
1984
).
34.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
(
1
),
558
561
(
1993
).
35.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
36.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
37.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
38.
Y.
Liu
and
W. A.
Goddard
III
, “
A universal damping function for empirical dispersion correction on density functional theory
,”
Mater. Trans.
50
(
7
),
1664
1670
(
2009
).
39.
H.
Kim
,
J.-M.
Choi
, and
W. A.
Goddard
III
, “
Universal correction of density functional theory to include London dispersion (up to Lr, element 103)
,”
J. Phys. Chem. Lett.
3
(
3
),
360
363
(
2012
).
40.
F.
Gao
and
L.
Han
, “
Implementing the Nelder-Mead simplex algorithm with adaptive parameters
,”
Comput. Optim. Appl.
51
(
1
),
259
277
(
2012
).
41.
D.
Kraft
, “
A software package for sequential quadratic programming
,”
Forschungsbericht
,
Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt
,
1988
.
42.
The MathWorks Inc.
,
MATLAB
,
2022
.
43.
C. A.
Hall
and
W. W.
Meyer
, “
Optimal error bounds for cubic spline interpolation
,”
J. Approximation Theory
16
(
2
),
105
122
(
1976
).
44.
S. A.
Surulere
,
M. Y.
Shatalov
,
A. C. P. G.
Mkolesia
, and
J. O.
Ehigie
, “
A novel identification of the extended-Rydberg potential energy function
,”
Comput. Math. Math. Phys.
59
(
8
),
1351
1360
(
2019
).
45.
S.
Naserifar
,
D. J.
Brooks
,
W. A.
Goddard
III
, and
V.
Cvicek
, “
Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids
,”
J. Chem. Phys.
146
(
12
),
124117
(
2017
).
46.
J. J.
Oppenheim
,
S.
Naserifar
, and
W. A.
Goddard
III
, “
Extension of the polarizable charge equilibration model to higher oxidation states with applications to Ge, as, Se, Br, Sn, Sb, Te, I, Pb, Bi, Po, and at elements
,”
J. Phys. Chem. A
122
(
2
),
639
645
(
2018
).
47.
S.
Kwon
,
S.
Naserifar
,
H. M.
Lee
, and
W. A.
Goddard
III
, “
Polarizable charge equilibration model for transition-metal elements
,”
J. Phys. Chem. A
122
(
48
),
9350
9358
(
2018
).
48.
S.
Naserifar
and
W. A.
Goddard
III
, “
The quantum mechanics-based polarizable force field for water simulations
,”
J. Chem. Phys.
149
(
17
),
174502
(
2018
).
You do not currently have access to this content.