Contrary to the case of solids and gases, where Debye theory and kinetic theory offer a good description for most of the physical properties, a complete theoretical understanding of the vibrational and thermodynamic properties of liquids is still missing. Liquids exhibit a vibrational density of states (VDOS) which does not obey Debye law, and a heat capacity which decreases monotonically with temperature, rather than growing as in solids. Despite many attempts, a simple, complete and widely accepted theoretical framework able to formally derive the aforementioned properties has not been found yet. Here, we revisit one of the theoretical proposals, and in particular we re-analyze the properties of liquids within the soft-potential model, originally formulated for glasses. We confirm that, at least at a qualitative level, many characteristic properties of liquids can be rationalized within this model. We discuss the validity of several phenomenological expressions proposed in the literature for the density of unstable modes, and in particular for its temperature and frequency dependence. We discuss the role of negative curvature regions and unstable modes as fundamental ingredients to have a linear in frequency VDOS. Finally, we compute the heat capacity within the soft potential model for liquids and we show that it decreases with temperature, in agreement with experimental and simulation data.

1.
K.
Trachenko
,
Theory of Liquids: From Excitations to Thermodynamics
(
Cambridge University Press
,
2023
).
2.
J.
Moon
,
S.
Thébaud
,
L.
Lindsay
, and
T.
Egami
, “
Microscopic view of heat capacity of matter: Solid, liquid, and gas
,” arXiv:2210.06218 (
2022
).
3.
R.
Zwanzig
, “
On the relation between self-diffusion and viscosity of liquids
,”
J. Chem. Phys.
79
,
4507
4508
(
1983
).
4.
F. H.
Stillinger
and
T. A.
Weber
, “
Dynamics of structural transitions in liquids
,”
Phys. Rev. A
28
,
2408
2416
(
1983
).
5.
T. A.
Weber
and
F. H.
Stillinger
, “
Inherent structures and distribution functions for liquids that freeze into bcc crystals
,”
J. Chem. Phys.
81
,
5089
5094
(
1984
).
6.
F.
Stillinger
,
Energy Landscapes, Inherent Structures, and Condensed-Matter Phenomena
(
Princeton University Press
,
2015
).
7.
J.
Chowdhary
and
T.
Keyes
, “
Thermodynamics and dynamics for a model potential energy landscape
,”
J. Phys. Chem. B
108
,
19786
19798
(
2004
).
8.
G.
Seeley
and
T.
Keyes
, “
Normal-mode analysis of liquid-state dynamics
,”
J. Chem. Phys.
91
,
5581
5586
(
1989
).
9.
T.
Keyes
, “
Instantaneous normal mode approach to liquid state dynamics
,”
J. Phys. Chem. A
101
,
2921
2930
(
1997
).
10.
R. M.
Stratt
, “
The instantaneous normal modes of liquids
,”
Acc. Chem. Res.
28
,
201
207
(
1995
).
11.
T.
Keyes
, “
Unstable modes in supercooled and normal liquids: Density of states, energy barriers, and self-diffusion
,”
J. Chem. Phys.
101
,
5081
5092
(
1994
).
12.
B.
Madan
,
T.
Keyes
, and
G.
Seeley
, “
Diffusion in supercooled liquids via normal mode analysis
,”
J. Chem. Phys.
92
,
7565
7569
(
1990
).
13.
T.
Keyes
, “
Normal mode theory of diffusion in liquids for a broad temperature range
,”
J. Chem. Phys.
103
,
9810
9812
(
1995
).
14.
V. I.
Clapa
,
T.
Kottos
, and
F. W.
Starr
, “
Localization transition of instantaneous normal modes and liquid diffusion
,”
J. Chem. Phys.
136
,
144504
(
2012
).
15.
J. D.
Gezelter
,
E.
Rabani
, and
B. J.
Berne
, “
Calculating the hopping rate for diffusion in molecular liquids: CS2
,”
J. Chem. Phys.
110
,
3444
3452
(
1999
).
16.
W.-X.
Li
,
T.
Keyes
, and
F.
Sciortino
, “
Three-flavor instantaneous normal mode formalism: Diffusion, harmonicity, and the potential energy landscape of liquid CS2
,”
J. Chem. Phys.
108
,
252
260
(
1998
).
17.
J.
Chowdhary
and
T.
Keyes
, “
Conjugate gradient filtering of instantaneous normal modes, saddles on the energy landscape, and diffusion in liquids
,”
Phys. Rev. E
65
,
026125
(
2002
).
18.
C.
Stamper
,
D.
Cortie
,
Z.
Yue
,
X.
Wang
, and
D.
Yu
, “
Experimental confirmation of the universal law for the vibrational density of states of liquids
,”
J. Phys. Chem. Lett.
13
,
3105
3111
(
2022
).
19.
W. A.
Phillips
,
U.
Buchenau
,
N.
Nücker
,
A.-J.
Dianoux
, and
W.
Petry
, “
Dynamics of glassy and liquid selenium
,”
Phys. Rev. Lett.
63
,
2381
2384
(
1989
).
20.
U.
Buchenau
, “
Soft modes in undercooled liquids
,”
J. Mol. Struct.
296
,
275
283
(
1993
).
21.
S.
Jin
,
X.
Fan
,
C.
Stamper
,
R. A.
Mole
,
Y.
Yu
,
L.
Hong
,
D.
Yu
, and
M.
Baggioli
, “
Dissecting the experimental vibrational density of states of liquids using instantaneous normal mode theory
,” arXiv:2304.14609 [cond-mat.soft] (
2023
).
22.
B.
Xu
and
R. M.
Stratt
, “
Liquid theory for band structure in a liquid
,”
J. Chem. Phys.
91
,
5613
5627
(
1989
).
23.
T.
Wu
and
R. F.
Loring
, “
Collective motions in liquids with a normal mode approach
,”
J. Chem. Phys.
99
,
8936
8947
(
1993
).
24.
Y.
Wan
and
R. M.
Stratt
, “
Liquid theory for the instantaneous normal modes of a liquid
,”
J. Chem. Phys.
100
,
5123
5138
(
1994
).
25.
A.
Zaccone
and
M.
Baggioli
, “
Universal law for the vibrational density of states of liquids
,”
Proc. Natl. Acad. Sci.
118
,
e2022303118
(
2021
).
26.
W.
Schirmacher
,
T.
Bryk
, and
G.
Ruocco
, “
Modeling the instantaneous normal mode spectra of liquids as that of unstable elastic media
,”
Proc. Natl. Acad. Sci.
119
,
e2119288119
(
2022
).
27.
W.-X.
Li
and
T.
Keyes
, “
Instantaneous normal mode theory of diffusion and the potential energy landscape: Application to supercooled liquid CS2
,”
J. Chem. Phys.
111
,
5503
5513
(
1999
).
28.
U.
Zürcher
and
T.
Keyes
, “
Anharmonic potentials in supercooled liquids: The soft-potential model
,”
Phys. Rev. E
55
,
6917
6927
(
1997
).
29.
T.
Wu
and
R. F.
Loring
, “
Phonons in liquids: A random walk approach
,”
J. Chem. Phys.
97
,
8568
8575
(
1992
).
30.
T.
Keyes
,
G. V.
Vijayadamodar
, and
U.
Zurcher
, “
An instantaneous normal mode description of relaxation in supercooled liquids
,”
J. Chem. Phys.
106
,
4651
4657
(
1997
).
31.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
2004
).
32.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
5
(
2015
).
33.
D.
Bolmatov
,
V.
Brazhkin
, and
K.
Trachenko
, “
The phonon theory of liquid thermodynamics
,”
Sci. Rep.
2
,
421
426
(
2012
).
34.
T.
Bryk
,
T.
Scopigno
, and
G.
Ruocco
, “
Heat capacity of liquids: A hydrodynamic approach
,”
Condens. Matter Phys.
18
, 13606 (
2015
).
35.
M.
Baggioli
and
A.
Zaccone
, “
Explaining the specific heat of liquids based on instantaneous normal modes
,”
Phys. Rev. E
104
,
014103
(
2021
).
36.
B.
Madan
and
T.
Keyes
, “
Unstable modes in liquids density of states, potential energy, and heat capacity
,”
J. Chem. Phys.
98
,
3342
3350
(
1993
).
37.
Y.
Rosenfeld
and
P.
Tarazona
, “
Density functional theory and the asymptotic high density expansion of the free energy of classical solids and fluids
,”
Mol. Phys.
95
,
141
150
(
1998
).
38.
D. C.
Wallace
, “
Liquid dynamics theory of high-temperature specific heat
,”
Phys. Rev. E
57
,
1717
1722
(
1998
).
39.
M. A.
Ramos
,
Low-Temperature Thermal and Vibrational Properties of Disordered Solids
(
World Scientific
,
2022
).
40.
U.
Buchenau
, “
The soft-potential model and its extensions
,” in
Low-Temperature Thermal and Vibrational Properties of Disordered Solids
(
World Scientific
, 2022), pp.
299
330
, Chap. 8.
41.
A.
Moriel
,
E.
Lerner
, and
E.
Bouchbinder
, “
The Boson peak in the vibrational spectra of glasses
,” arXiv:2304.03661 [cond-mat.dis-nn] (
2023
).
42.
V.
Karpov
and
I.
Klinger
, “
Theory of the low-temperature anomalies in the thermal properties of amorphous structures
,”
Zh. Eksp. Teor. Fiz.
84
,
775
(
1983
).
43.
D. A.
Parshin
, “
Soft potential model and universal properties of glasses
,”
Phys. Scr.
1993
,
180
.
44.
U.
Buchenau
,
Y. M.
Galperin
,
V. L.
Gurevich
, and
H. R.
Schober
, “
Anharmonic potentials and vibrational localization in glasses
,”
Phys. Rev. B
43
,
5039
5045
(
1991
).
45.
U.
Buchenau
,
Y. M.
Galperin
,
V. L.
Gurevich
,
D. A.
Parshin
,
M. A.
Ramos
, and
H. R.
Schober
, “
Interaction of soft modes and sound waves in glasses
,”
Phys. Rev. B
46
,
2798
2808
(
1992
).
46.
L.
Gil
,
M. A.
Ramos
,
A.
Bringer
, and
U.
Buchenau
, “
Low-temperature specific heat and thermal conductivity of glasses
,”
Phys. Rev. Lett.
70
,
182
185
(
1993
).
47.
U.
Buchenau
, “
Anharmonic effects in undercooled liquids
,”
J. Non-Cryst. Solids
172–174
,
391
395
(
1994
), relaxations in Complex Systems.
48.
J.
Frenkel
,
Kinetic Theory of Liquids
(
Oxford University Press
,
Oxford, UK
,
1946
).
49.
L.
Ferrari
,
W.
Phillips
, and
G.
Russo
, “
Heat capacity at the glass transition
,”
Europhys. Lett.
3
,
611
(
1987
).
50.
F. H.
Stillinger
, “
A topographic view of supercooled liquids and glass formation
,”
Science
267
,
1935
1939
(
1995
).
51.
G. V.
Vijayadamodar
and
A.
Nitzan
, “
On the application of instantaneous normal mode analysis to long time dynamics of liquids
,”
J. Chem. Phys.
103
,
2169
2177
(
1995
).
52.
W.
Zhang
,
J. F.
Douglas
, and
F. W.
Starr
, “
What does the instantaneous normal mode spectrum tell us about dynamical heterogeneity in glass-forming fluids?
,”
J. Chem. Phys.
151
,
184904
(
2019
).
53.
T.
Keyes
, “
Normal mode analysis: Theory and applications to biological and chemical systems
,” Chap. The Relation Between Unstable Instantaneous Normal Modes and Diffusion (
Chapman and Hall/CRC
,
2005
).
54.
W.-X.
Li
and
T.
Keyes
, “
Pure translation instantaneous normal modes: Imaginary frequency contributions vanish at the glass transition in CS2
,”
J. Chem. Phys.
107
,
7275
7277
(
1997
).
55.
M.
Baggioli
,
M.
Vasin
,
V.
Brazhkin
, and
K.
Trachenko
, “
Gapped momentum states
,”
Phys. Rep.
865
,
1
44
(
2020
), gapped momentum states.
56.
P.
Esquinazi
,
Tunneling Systems in Amorphous and Crystalline Solids
(
Springer Berlin Heidelberg
,
2013
).
57.
C. C.
Yu
and
H. M.
Carruzzo
, “
Two-level systems and the tunneling model: A critical view
,” in
Low-Temperature Thermal and Vibrational Properties of Disordered Solids
(
World Scientific
, 2022), pp.
113
139
, Chap. 4.
58.
J.
Moon
,
L.
Lindsay
, and
T.
Egami
, “
Atomic dynamics in fluids: Normal mode analysis revisited
,”
Phys. Rev. E
108
, 014601 (
2023
).
You do not currently have access to this content.