We derive and implement an alternative formulation of the Stochastic Lanczos algorithm to be employed in connection with the Many-Body Dispersion model (MBD). Indeed, this formulation, which is only possible due to the Stochastic Lanczos’ reliance on matrix-vector products, introduces generalized dipoles and fields. These key quantities allow for a state-of-the-art treatment of periodic boundary conditions via the O(Nlog(N)) Smooth Particle Mesh Ewald (SPME) approach which uses efficient fast Fourier transforms. This SPME-Lanczos algorithm drastically outperforms the standard replica method which is affected by a slow and conditionally convergence rate that limits an efficient and reliable inclusion of long-range periodic boundary conditions interactions in many-body dispersion modelling. The proposed algorithm inherits the embarrassingly parallelism of the original Stochastic Lanczos scheme, thus opening up for a fully converged and efficient periodic boundary conditions treatment of MBD approaches.

1.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
(
John Wiley & Sons, Ltd.
,
Chichester
,
2000
).
2.
F.
Jensen
,
Introduction to Computational Chemistry
,
3rd ed.
(
Wiley
,
Chichester, UK
,
2017
).
3.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
, “
Dispersion-corrected mean-field electronic structure methods
,”
Chem. Rev.
116
,
5105
5154
(
2016
).
4.
A. G.
Donchev
, “
Many-body effects of dispersion interaction
,”
J. Chem. Phys.
125
,
074713
(
2006
).
5.
A.
Ambrosetti
,
A. M.
Reilly
,
R. A.
DiStasio
, and
A.
Tkatchenko
, “
Long-range correlation energy calculated from coupled atomic response functions
,”
J. Chem. Phys.
140
,
18A508
(
2014
).
6.
T.
Gould
,
S.
Lebègue
,
J. G.
Ángyán
, and
T.
Bučko
, “
A fractionally ionic approach to polarizability and van der Waals many-body dispersion calculations
,”
J. Chem. Theory Comput.
12
,
5920
5930
(
2016
).
7.
K.
Carter-Fenk
,
K. U.
Lao
,
K.-Y.
Liu
, and
J. M.
Herbert
, “
Accurate and efficient ab initio calculations for supramolecular complexes: Symmetry-adapted perturbation theory with many-body dispersion
,”
J. Phys. Chem. Lett.
10
,
2706
2714
(
2019
).
8.
P. P.
Poier
,
T.
Jaffrelot Inizan
,
O.
Adjoua
,
L.
Lagardère
, and
J.-P.
Piquemal
, “
Accurate deep learning-aided density-free strategy for many-body dispersion-corrected density functional theory
,”
J. Phys. Chem. Lett.
13
,
4381
4388
(
2022
).
9.
P. P.
Poier
,
O.
Adjoua
,
L.
Lagardère
, and
J.-P.
Piquemal
, “
Generalized many-body dispersion correction through random-phase approximation for chemically accurate density functional theory
,”
J. Phys. Chem. Lett.
14
,
1609
1617
(
2023
).
10.
S.
Ubaru
,
J.
Chen
, and
Y.
Saad
, “
Fast estimation of tr(f(A)) via stochastic Lanczos quadrature
,”
SIAM J. Matrix Anal. Appl.
38
,
1075
1099
(
2017
).
11.
P. P.
Poier
,
L.
Lagardère
, and
J.-P.
Piquemal
, “
O(N) stochastic evaluation of many-body van der Waals energies in large complex systems
,”
J. Chem. Theory Comput.
18
,
1633
1645
(
2022
).
12.
M.
Stöhr
and
A.
Tkatchenko
, “
Quantum mechanics of proteins in explicit water: The role of plasmon-like solute–solvent interactions
,”
Sci. Adv.
5
,
eaax0024
(
2019
).
13.
T.
Bučko
,
S.
Lebègue
,
T.
Gould
, and
J. G.
Ángyán
, “
Many-body dispersion corrections for periodic systems: An efficient reciprocal space implementation
,”
J. Phys.: Condens. Matter
28
,
045201
(
2016
).
14.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
15.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
16.
T. J.
Giese
,
M. T.
Panteva
,
H.
Chen
, and
D. M.
York
, “
Multipolar Ewald methods, 1: Theory, accuracy, and performance
,”
J. Chem. Theory Comput.
11
,
436
450
(
2015
).
17.
T.
Brinck
,
J. S.
Murray
, and
P.
Politzer
, “
Polarizability and volume
,”
J. Chem. Phys.
98
,
4305
4306
(
1993
).
18.
A. D.
Becke
and
E. R.
Johnson
, “
Exchange-hole dipole moment and the dispersion interaction: High-order dispersion coefficients
,”
J. Chem. Phys.
124
,
014104
(
2006
).
19.
A.
Tkatchenko
and
M.
Scheffler
, “
Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data
,”
Phys. Rev. Lett.
102
,
073005
(
2009
).
20.
K. R.
Bryenton
and
E. R.
Johnson
, “
Many-body dispersion in model systems and the sensitivity of self-consistent screening
,”
J. Chem. Phys.
158
,
204110
(
2023
).
21.
D.
Massa
,
A.
Ambrosetti
, and
P. L.
Silvestrelli
, “
Many-body van der Waals interactions beyond the dipole approximation
,”
J. Chem. Phys.
154
,
224115
(
2021
).
22.
M.
Hutchinson
, “
A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines
,”
Commun. Stat. Simul. Comput.
19
,
433
450
(
1990
).
23.
G. H.
Golub
and
G.
Meurant
,
Matrices, Moments and Quadrature with Applications
(
Princeton University Press
,
2009
).
24.
M. A.
Blood-Forsythe
,
T.
Markovich
,
R. A.
DiStasio
,
R.
Car
, and
A.
Aspuru-Guzik
, “
Analytical nuclear gradients for the range-separated many-body dispersion model of noncovalent interactions
,”
Chem. Sci.
7
,
1712
1728
(
2016
).
25.
S. W.
de Leeuw
,
J. W.
Ewald
, and
E. R.
Smith
, “
Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants
,”
Proc. R. Soc. London, Ser. A
373
,
27
56
(
1980
).
26.
P. P.
Poier
and
J.
Frank
, “
Including implicit solvation in the bond capacity polarization model
,”
J. Chem. Phys.
151
,
114118
(
2019
).
27.
P. P.
Poier
and
F.
Jensen
, “
Polarizable charges in a generalized Born reaction potential
,”
J. Chem. Phys.
153
,
024111
(
2020
).
28.
B.
Stamm
,
L.
Lagardère
,
E.
Polack
,
Y.
Maday
, and
J.-P.
Piquemal
, “
A coherent derivation of the Ewald summation for arbitrary orders of multipoles: The self-terms
,”
J. Chem. Phys.
149
,
124103
(
2018
).
29.
A.
Redlack
and
J.
Grindlay
, “
Coulombic potential lattice sums
,”
J. Phys. Chem. Solids
36
,
73
82
(
1975
).
30.
T. R. C.
Kenny
,
B.
Lipkowitz
, and
D. B.
Boyd
,
Reviews in Computational Chemistry
(
Wiley
,
2007
), Vol.
24
.
31.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
New York
,
1989
).
32.
C.
Sagui
,
L. G.
Pedersen
, and
T. A.
Darden
, “
Towards an accurate representation of electrostatics in classical force fields: Efficient implementation of multipolar interactions in biomolecular simulations
,”
J. Chem. Phys.
120
,
73
87
(
2004
).
33.
L.
Lagardère
,
L.-H.
Jolly
,
F.
Lipparini
,
F.
Aviat
,
B.
Stamm
,
Z. F.
Jing
,
M.
Harger
,
H.
Torabifard
,
G. A.
Cisneros
,
M. J.
Schnieders
,
N.
Gresh
,
Y.
Maday
,
P. Y.
Ren
,
J. W.
Ponder
, and
J.-P.
Piquemal
, “
Tinker-HP: A massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields
,”
Chem. Sci.
9
,
956
972
(
2018
).
34.
O.
Adjoua
,
L.
Lagardère
,
L.-H.
Jolly
,
A.
Durocher
,
T.
Very
,
I.
Dupays
,
Z.
Wang
,
T. J.
Inizan
,
F.
Célerse
,
P.
Ren
,
J. W.
Ponder
, and
J. P.
Piquemal
, “
Tinker-HP: Accelerating molecular dynamics simulations of large complex systems with advanced point dipole polarizable force fields using GPUs and multi-GPU systems
,”
J. Chem. Theory Comput.
17
,
2034
2053
(
2021
).
35.
C.
Lanczos
, “
An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
,”
J. Res. Natl. Bur. Stand.
45
,
255
282
(
1950
).
36.
C.
Brezinski
,
M.
Zaglia
, and
H.
Sadok
, “
A review of formal orthogonality in Lanczos-based methods
,”
J. Comput. Appl. Math.
140
,
81
98
(
2002
), Int. Congress on Computational and Applied Mathematics 2000.
37.
I.
Chollet
,
L.
Lagardère
, and
J.-P.
Piquemal
, “
ANKH: A generalized O(N) interpolated Ewald strategy for molecular dynamics simulations
,”
J. Chem. Theory Comput.
19
,
2887
2905
(
2023
).
You do not currently have access to this content.