The aluminum ion battery (AIB) is a promising technology, but there is a lack of understanding of the desired nature of the batteries’ electrolytes. The ionic charge carriers in these batteries are not simply Al3+ ions but the anionic AlCl4 and Al2Cl7, which form in the electrolyte. Using computational analysis, this study illustrates the effect of mole ratios and organic solvents to improve the AIB electrolytes. To this end, molecular dynamics simulations were conducted on varying ratios forming acidic, neutral, and basic mixtures of the AlCl3 salt with 1-ethyl-3-methylimidazolium chloride (EMImCl) ionic liquid (IL) and an organic solvent electrolyte [dichloromethane (DCM) or toluene]. The data obtained from diffusion calculations indicates that the solvents could improve the transport properties. Both DCM and toluene lead to higher diffusion coefficients, and higher conductivity. Detailed calculations demonstrated solvents can effectively improve the formation of AlCl3⋯Cl (AlCl4) and AlCl4···AlCl4 (Al2Cl7) especially in acidic mixtures. The densities, around 1.25 g/cm3 for electrolyte mixtures of AlCl3-EMImCl, were consistent with experiment. These results, in agreement with experimental findings, strongly suggest that DCM in acidic media with AlCl3 and EMImCl might provide a promising basis for battery development.

1.
Y. E.
Durmus
,
H.
Zhang
,
F.
Baakes
,
G.
Desmaizieres
,
H.
Hayun
,
L.
Yang
,
M.
Kolek
,
V.
Küpers
,
J.
Janek
,
D.
Mandler
,
S.
Passerini
, and
Y.
Ein-Eli
, “
Side by side battery technologies with lithium-ion based batteries
,”
Adv. Energy Mater.
10
(
24
),
2000089
(
2020
).
2.
M.
Walter
,
M. V.
Kovalenko
, and
K. V.
Kravchyk
, “
Challenges and benefits of post-lithium-ion batteries
,”
New J. Chem.
44
(
5
),
1677
1683
(
2020
).
3.
F.
Duffner
,
N.
Kronemeyer
,
J.
Tübke
,
J.
Leker
,
M.
Winter
, and
R.
Schmuch
, “
Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure
,”
Nat. Energy
6
(
2
),
123
134
(
2021
).
4.
S.
Das
,
S. S.
Manna
, and
B.
Pathak
, “
Recent trends in electrode and electrolyte design for aluminum batteries
,”
ACS Omega
6
(
2
),
1043
1053
(
2021
).
5.
G. A.
Elia
,
K. V.
Kravchyk
,
M. V.
Kovalenko
,
J.
Chacón
,
A.
Holland
, and
R. G. A.
Wills
, “
An overview and prospective on Al and Al-ion battery technologies
,”
J. Power Sources
481
,
228870
(
2021
).
6.
Y.
Zhang
,
S.
Liu
,
Y.
Ji
,
J.
Ma
, and
H.
Yu
, “
Emerging nonaqueous aluminum-ion batteries: Challenges, status, and perspectives
,”
Adv. Mater.
30
(
38
),
e1706310
(
2018
).
7.
F.
Wu
,
H.
Yang
,
Y.
Bai
, and
C.
Wu
, “
Paving the path toward reliable cathode materials for aluminum-ion batteries
,”
Adv. Mater.
31
(
16
),
e1806510
(
2019
).
8.
H.
Yang
,
H.
Li
,
J.
Li
,
Z.
Sun
,
K.
He
,
H. M.
Cheng
, and
F.
Li
, “
The rechargeable aluminum battery: Opportunities and challenges
,”
Angew. Chem., Int. Ed.
58
(
35
),
11978
11996
(
2019
).
9.
H.
Zhao
,
J.
Xu
,
D.
Yin
, and
Y.
Du
, “
Electrolytes for batteries with earth-abundant metal anodes
,”
Chem. - Eur. J.
24
,
18220
18234
(
2018
).
10.
K. V.
Kravchyk
,
S.
Wang
,
L.
Piveteau
, and
M. V.
Kovalenko
, “
Efficient aluminum chloride–natural graphite battery
,”
Chem. Mater.
29
(
10
),
4484
4492
(
2017
).
11.
G. A.
Elia
,
N. A.
Kyeremateng
,
K.
Marquardt
, and
R.
Hahn
, “
An aluminum/graphite battery with ultra high rate capability
,”
Batteries Supercaps
2
,
83
(
2019
).
12.
H.
Wang
,
Y.
Bai
,
S.
Chen
,
X.
Luo
,
C.
Wu
,
F.
Wu
,
J.
Lu
, and
K.
Amine
, “
Binder-free V2O5 cathode for greener rechargeable aluminum battery
,”
ACS Appl. Mater. Interfaces
7
,
80
84
(
2014
).
13.
M.
Shakourian-Fard
,
G.
Kamath
,
S. M.
Taimoory
, and
J. F.
Trant
, “
Calcium-ion batteries: Identifying ideal electrolytes for next-generation energy storage using computational analysis
,”
J. Phys. Chem. C
123
(
26
),
15885
15896
(
2019
).
14.
C.
Xu
,
W.
Zhang
,
P.
Li
,
S.
Zhao
,
Y.
Du
,
H.
Jin
,
Y.
Zhang
,
Z.
Wang
, and
J.
Zhang
, “
High-performance aluminum-ion batteries based on AlCl3/caprolactam electrolytes
,”
Sustainable Energy Fuels
4
(
1
),
121
127
(
2020
).
15.
T.
Hosaka
,
K.
Kubota
,
A. S.
Hameed
, and
S.
Komaba
, “
Research development on K-ion batteries
,”
Chem. Rev.
120
(
14
),
6358
6466
(
2020
).
16.
T.
Schoetz
,
C. P.
de Leon
,
M.
Ueda
, and
A.
Bund
, “
Perspective—State of the art of rechargeable aluminum batteries in non-aqueous systems
,”
J. Electrochem. Soc.
164
(
14
),
A3499
A3502
(
2017
).
17.
C.
Yang
,
S.
Wang
,
X.
Zhang
,
Q.
Zhang
,
W.
Ma
,
S.
Yu
, and
G.
Sun
, “
Substituent effect of imidazolium ionic liquid: A potential strategy for high Coulombic efficiency Al battery
,”
J. Phys. Chem. C
123
(
18
),
11522
11528
(
2019
).
18.
B.
Craig
,
T.
Schoetz
,
A.
Cruden
, and
C.
Ponce de Leon
, “
Review of current progress in non-aqueous aluminium batteries
,”
Renewable Sustainable Energy Rev.
133
,
110100
(
2020
).
19.
B.
Zhang
,
W.
Zhang
,
H.
Jin
, and
J.
Wan
, “
Research progress of cathode materials for rechargeable aluminum batteries in AlCl3/[EMIm]Cl and other electrolyte systems
,”
ChemistrySelect
8
(
10
),
e202204575
(
2023
).
20.
O. M.
Leung
,
T.
Schoetz
,
T.
Prodromakis
, and
C.
Ponce de Leon
, “
Review—Progress in electrolytes for rechargeable aluminium batteries
,”
J. Electrochem. Soc.
168
(
5
),
056509
(
2021
).
21.
F.
Ambroz
,
T. J.
Macdonald
, and
T.
Nann
, “
Trends in aluminium-based intercalation batteries
,”
Adv. Energy Mater.
7
,
1602093
(
2017
).
22.
N.
Jayaprakash
,
S. K.
Das
, and
L. A.
Archer
, “
The rechargeable aluminum-ion battery
,”
Chem. Commun.
47
(
47
),
12610
12612
(
2011
).
23.
T.
Leisegang
,
F.
Meutzner
,
M.
Zschornak
,
W.
Munchgesang
,
R.
Schmid
,
T.
Nestler
,
R. A.
Eremin
,
A. A.
Kabanov
,
V. A.
Blatov
, and
D. C.
Meyer
, “
The aluminum-ion battery: A sustainable and seminal concept?
,”
Front. Chem.
7
,
268
(
2019
).
24.
E.
Faegh
,
B.
Ng
,
D.
Hayman
, and
W. E.
Mustain
, “
Practical assessment of the performance of aluminium battery technologies
,”
Nat. Energy
6
(
1
),
21
29
(
2020
).
25.
J. V.
Rani
,
V.
Kanakaiah
,
T.
Dadmal
,
M. S.
Rao
, and
S.
Bhavanarushi
, “
Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum–ion battery
,”
J. Electrochem. Soc.
160
(
10
),
A1781
A1784
(
2013
).
26.
H.
Sun
,
W.
Wang
,
Z.
Yu
,
Y.
Yuan
,
S.
Wang
, and
S.
Jiao
, “
A new aluminium-ion battery with high voltage, high safety and low cost
,”
Chem. Commun.
51
,
11892
11895
(
2015
).
27.
M. C.
Lin
,
M.
Gong
,
B.
Lu
,
Y.
Wu
,
D. Y.
Wang
,
M.
Guan
,
M.
Angell
,
C.
Chen
,
J.
Yang
,
B. J.
Hwang
, and
H.
Dai
, “
An ultrafast rechargeable aluminium-ion battery
,”
Nature
520
(
7547
),
324
328
(
2015
).
28.
C.
Ferrara
,
V.
Dall’Asta
,
V.
Berbenni
,
E.
Quartarone
, and
P.
Mustarelli
, “
Physicochemical characterization of AlCl3–1-ethyl-3-methylimidazolium chloride ionic liquid electrolytes for aluminum rechargeable batteries
,”
J. Phys. Chem. C
121
(
48
),
26607
26614
(
2017
).
29.
G.
Zhu
,
M.
Angell
,
C. J.
Pan
,
M. C.
Lin
,
H.
Chen
,
C. J.
Huang
,
J.
Lin
,
A. J.
Achazi
,
P.
Kaghazchi
,
B. J.
Hwang
, and
H.
Dai
, “
Rechargeable aluminum batteries: Effects of cations in ionic liquid electrolytes
,”
RSC Adv.
9
(
20
),
11322
11330
(
2019
).
30.
T.
Schoetz
,
O.
Leung
,
C. P.
de Leon
,
C.
Zaleski
, and
I.
Efimov
, “
Aluminium deposition in EMImCl-AlCl3 ionic liquid and ionogel for improved aluminium batteries
,”
J. Electrochem. Soc.
167
(
4
),
040516
(
2020
).
31.
R.
Böttcher
,
A.
Ispas
, and
A.
Bund
, “
Anodic dissolution of aluminum and anodic passivation in [EMIm]Cl-based ionic liquids
,”
Electrochem. Commun.
115
,
106720
(
2020
).
32.
Y.
Ito
and
T.
Nohira
, “
Non-conventional electrolytes for electrochemical applications
,”
Electrochim. Acta
45
(
15
),
2611
2622
(
2000
).
33.
D.
Bedrov
,
J.-P.
Piquemal
,
O.
Borodin
,
A. D.
MacKerell
, Jr.
,
B.
Roux
, and
C.
Schröder
, “
Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields
,”
Chem. Rev.
119
(
13
),
7940
7995
(
2019
).
34.
C.
Schröder
, “
Comparing reduced partial charge models with polarizable simulations of ionic liquids
,”
Phys. Chem. Chem. Phys.
14
(
9
),
3089
3102
(
2012
).
35.
A. A. H.
Pádua
, “
Resolving dispersion and induction components for polarisable molecular simulations of ionic liquids
,”
J. Chem. Phys.
146
(
20
),
204501
(
2017
).
36.
Y.
Park
,
D.
Lee
,
J.
Kim
,
G.
Lee
, and
Y.
Tak
, “
Fast charging with high capacity for aluminum rechargeable batteries using organic additive in an ionic liquid electrolyte
,”
Phys. Chem. Chem. Phys.
22
(
47
),
27525
27528
(
2020
).
37.
X. G.
Sun
,
Y.
Fang
,
X.
Jiang
,
K.
Yoshii
,
T.
Tsuda
, and
S.
Dai
, “
Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries
,”
Chem. Commun.
52
(
2
),
292
295
(
2016
).
38.
J.
Muldoon
,
C. B.
Bucur
, and
T.
Gregory
, “
Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond
,”
Chem. Rev.
114
(
23
),
11683
11720
(
2014
).
39.
S.
Xia
,
X.-M.
Zhang
,
K.
Huang
,
Y.-L.
Chen
, and
Y.-T.
Wu
, “
Ionic liquid electrolytes for aluminium secondary battery: Influence of organic solvents
,”
J. Electroanal. Chem.
757
,
167
175
(
2015
).
40.
Q.
Yang
,
Z.
Zhang
,
X.-G.
Sun
,
Y.-S.
Hu
,
H.
Xing
, and
S.
Dai
, “
Ionic liquids and derived materials for lithium and sodium batteries
,”
Chem. Soc. Rev.
47
(
6
),
2020
2064
(
2018
).
41.
T.
GuoCai
,
W.
Ding
, and
L.
YaDong
, “
Simulation of the properties of 1-ethyl-3-methyl- imidazolium chloride/chloroaluminate ionic liquids: Concentration and temperature dependence
,”
Adv. Mater. Res.
457-458
,
249
252
(
2012
).
42.
T.
Guo-cai
and
Y.
Qing-xiang
, “
Effect of dichloromethane and toluene on the structure, property, and Al electrodeposition in 1-butyl-3-methylimidazolium chloroaluminate ionic liquid
,”
Chin. J. Chem. Eng.
43
(
8
),
1037
1046
(
2021
).
43.
N.
Yao
,
X.
Chen
,
Z.-H.
Fu
, and
Q.
Zhang
, “
Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries
,”
Chem. Rev.
122
(
12
),
10970
11021
(
2022
).
44.
K. J.
Bowers
,
E.
Chow
,
H.
Xu
,
R. O.
Dror
,
M. P.
Eastwood
,
B. A.
Gregersen
,
J. L.
Klepeis
,
I.
Kolossváry
,
M. A.
Moraes
,
F. D.
Sacerdoti
,
J. K.
Salmon
,
Y.
Shan
, and
D. E.
Shaw
, “
In Scalable algorithms for molecular dynamics simulations on commodity clusters
,” in
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing
(
Association for Computing Machinery
,
Tampa, FL
,
2006
).
45.
D. E.
Shaw
,
Desmond Molecular Dynamics System 2019-03
(
Schrödinger
,
New York, NY
,
2021
).
46.
A. A.
Fannin
,
D. A.
Floreani
,
L. A.
King
,
J. S.
Landers
,
B. J.
Piersma
,
D. J.
Stech
,
R. L.
Vaughn
,
J. S.
Wilkes
, and
J. L.
Williams
, “
Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities
,”
J. Phys. Chem.
88
(
12
),
2614
2621
(
1984
).
47.
C.
Lu
,
C.
Wu
,
D.
Ghoreishi
,
W.
Chen
,
L.
Wang
,
W.
Damm
,
G. A.
Ross
,
M. K.
Dahlgren
,
E.
Russell
,
C. D.
Von Bargen
,
R.
Abel
,
R. A.
Friesner
, and
E. D.
Harder
, “
OPLS4: Improving force field accuracy on challenging regimes of chemical space
,”
J. Chem. Theory Comput.
17
(
7
),
4291
4300
(
2021
).
48.
M.
Salanne
,
L. J. A.
Siqueira
,
A. P.
Seitsonen
,
P. A.
Madden
, and
B.
Kirchner
, “
From molten salts to room temperature ionic liquids: Simulation studies on chloroaluminate systems
,”
Faraday Discuss.
154
,
171
188
(
2012
).
49.
P.
Kubisiak
and
A.
Eilmes
, “
Molecular dynamics simulations of ionic liquid based electrolytes for Na-ion batteries: Effects of force field
,”
J. Phys. Chem. B
121
,
9957
9968
(
2017
).
50.
H. A.
Posch
,
W. G.
Hoover
, and
F. J.
Vesely
, “
Canonical dynamics of the Nosé oscillator: Stability, order, and chaos
,”
Phys. Rev. A
33
(
6
),
4253
4265
(
1986
).
51.
C.
Predescu
,
A. K.
Lerer
,
R. A.
Lippert
,
B.
Towles
,
J. P.
Grossman
,
R. M.
Dirks
, and
D. E.
Shaw
, “
The u-series: A separable decomposition for electrostatics computation with improved accuracy
,”
J. Chem. Phys.
152
(
8
),
084113
(
2020
).
52.
K. V.
Kravchyk
and
M. V.
Kovalenko
, “
Aluminum electrolytes for Al dual-ion batteries
,”
Commun. Chem.
3
(
1
),
120
(
2020
).
53.
T.
Méndez-Morales
,
J.
Carrete
,
S.
Bouzón-Capelo
,
M.
Pérez-Rodríguez
,
Ó.
Cabeza
,
L. J.
Gallego
, and
L. M.
Varela
, “
MD simulations of the formation of stable clusters in mixtures of alkaline salts and imidazolium-based ionic liquids
,”
J. Phys. Chem. B
117
(
11
),
3207
3220
(
2013
).
54.
J.
Tong
,
S.
Wu
,
N.
von Solms
,
X.
Liang
,
F.
Huo
,
Q.
Zhou
,
H.
He
, and
S.
Zhang
, “
The effect of concentration of lithium salt on the structural and transport properties of ionic liquid-based electrolytes
,”
Front. Chem.
7
,
945
(
2020
).
55.
H.
Xu
,
T.
Bai
,
H.
Chen
,
F.
Guo
,
J.
Xi
,
T.
Huang
,
S.
Cai
,
X.
Chu
,
J.
Ling
,
W.
Gao
,
Z.
Xu
, and
C.
Gao
, “
Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery
,”
Energy Storage Mater.
17
,
38
45
(
2019
).
56.
G. A.
Elia
,
K.
Marquardt
,
K.
Hoeppner
,
S.
Fantini
,
R.
Lin
,
E.
Knipping
,
W.
Peters
,
J. F.
Drillet
,
S.
Passerini
, and
R.
Hahn
, “
An overview and future perspectives of aluminum batteries
,”
Adv. Mater.
28
(
35
),
7564
7579
(
2016
).
57.
H.
Wang
,
S.
Gu
,
Y.
Bai
,
S.
Chen
,
N.
Zhu
,
C.
Wu
, and
F.
Wu
, “
Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries
,”
J. Mater. Chem. A
3
(
45
),
22677
22686
(
2015
).
58.
S.
Takahashi
,
K.
Suzuya
,
S.
Kohara
,
N.
Koura
,
L. A.
Curtiss
, and
M. L.
Saboungi
, “
Structure of 1-ethyl-3-methylimidazolium chloroaluminates: Neutron diffraction measurements and ab initio calculations
,”
Z. Phys. Chem.
209
(
2
),
209
221
(
1999
).
59.
A.
Fernicola
,
B.
Scrosati
, and
H.
Ohno
, “
Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices
,”
Ionics
12
(
2
),
95
102
(
2006
).
60.
C. J.
Margulis
,
H. A.
Stern
, and
B. J.
Berne
, “
Computer simulation of a ‘green chemistry’ room-temperature ionic solvent
,”
J. Phys. Chem. B
106
,
12017
12021
(
2002
).
61.
H. K.
Kashyap
,
V. R.
Annapureddy
,
F. O.
Raineri
, and
C. J.
Margulis
, “
How is charge transport different in ionic liquids and electrolyte solutions?
,”
J. Phys. Chem. B
115
,
13212
13221
(
2011
).
62.
Y.
Shao
,
K.
Shigenobu
,
M.
Watanabe
, and
C.
Zhang
, “
Role of viscosity in deviations from the Nernst–Einstein relation
,”
J. Phys. Chem. B
124
,
4774
4780
(
2020
).
63.
M.
Galiński
,
A.
Lewandowski
, and
I.
Stępniak
, “
Ionic liquids as electrolytes
,”
Electrochim. Acta
51
(
26
),
5567
5580
(
2006
).
64.
S. S.
Manna
,
P.
Bhauriyal
, and
B.
Pathak
, “
Identifying suitable ionic liquid electrolytes for Al dual-ion batteries: Role of electrochemical window, conductivity and voltage
,”
Mater. Adv.
1
(
5
),
1354
1363
(
2020
).

Supplementary Material

You do not currently have access to this content.