Orbital-free density functional theory (OF-DFT) holds promise to compute ground state molecular properties at minimal cost. However, it has been held back by our inability to compute the kinetic energy as a functional of electron density alone. Here, we set out to learn the kinetic energy functional from ground truth provided by the more expensive Kohn–Sham density functional theory. Such learning is confronted with two key challenges: Giving the model sufficient expressivity and spatial context while limiting the memory footprint to afford computations on a GPU and creating a sufficiently broad distribution of training data to enable iterative density optimization even when starting from a poor initial guess. In response, we introduce KineticNet, an equivariant deep neural network architecture based on point convolutions adapted to the prediction of quantities on molecular quadrature grids. Important contributions include convolution filters with sufficient spatial resolution in the vicinity of nuclear cusp, an atom-centric sparse but expressive architecture that relays information across multiple bond lengths, and a new strategy to generate varied training data by finding ground state densities in the face of perturbations by a random external potential. KineticNet achieves, for the first time, chemical accuracy of the learned functionals across input densities and geometries of tiny molecules. For two-electron systems, we additionally demonstrate OF-DFT density optimization with chemical accuracy.

1.
R. G.
Parr
and
W.
Yang
, “
Density-functional theory of the electronic structure of molecules
,”
Annu. Rev. Phys. Chem.
46
,
701
728
(
1995
).
2.
J.
Kirkpatrick
,
B.
McMorrow
,
D. H. P.
Turban
,
A. L.
Gaunt
,
J. S.
Spencer
,
A. G. D. G.
Matthews
,
A.
Obika
,
L.
Thiry
,
M.
Fortunato
,
D.
Pfau
,
L. R.
Castellanos
,
S.
Petersen
,
A. W. R.
Nelson
,
P.
Kohli
,
P.
Mori-Sánchez
,
D.
Hassabis
, and
A. J.
Cohen
, “
Pushing the frontiers of density functionals by solving the fractional electron problem
,”
Science
374
,
1385
1389
(
2021
).
3.
R.
Nagai
,
R.
Akashi
, and
O.
Sugino
, “
Completing density functional theory by machine learning hidden messages from molecules
,”
npj Comput. Mater.
6
,
43
(
2020
).
4.
K.
Bystrom
and
B.
Kozinsky
, “
Cider: An expressive, nonlocal feature set for machine learning density functionals with exact constraints
,”
J. Chem. Theory Comput.
18
,
2180
2192
(
2022
).
5.
S.
Dick
and
M.
Fernandez-Serra
, “
Machine learning accurate exchange and correlation functionals of the electronic density
,”
Nat. Commun.
11
,
3509
(
2020
).
6.
N.
Mardirossian
and
M.
Head-Gordon
, “
ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy
,”
Phys. Chem. Chem. Phys.
16
,
9904
9924
(
2014
).
7.
J.
Schmidt
,
C. L.
Benavides-Riveros
, and
M. A.
Marques
, “
Machine learning the physical nonlocal exchange–correlation functional of density-functional theory
,”
J. Phys. Chem. Lett.
10
,
6425
6431
(
2019
).
8.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
L.
Blooston
,
K.-R.
Müller
, and
K.
Burke
, “
Orbital-free bond breaking via machine learning
,”
J. Chem. Phys.
139
,
224104
(
2013
).
9.
R.
Meyer
,
M.
Weichselbaum
, and
A. W.
Hauser
, “
Machine learning approaches toward orbital-free density functional theory: Simultaneous training on the kinetic energy density functional and its functional derivative
,”
J. Chem. Theory Comput.
16
,
5685
5694
(
2020
).
10.
H.
Saidaoui
,
S.
Kais
,
S.
Rashkeev
, and
F.
Alharbi
, “
Direct scheme calculation of the kinetic energy functional derivative using machine learning
,” arXiv:2003.00876 (
2020
).
11.
S. A.
Ghasemi
and
T. D.
Kühne
, “
Artificial neural networks for the kinetic energy functional of non-interacting fermions
,”
J. Chem. Phys.
154
,
074107
(
2021
).
12.
P.
Golub
and
S.
Manzhos
, “
Kinetic energy densities based on the fourth order gradient expansion: Performance in different classes of materials and improvement via machine learning
,”
Phys. Chem. Chem. Phys.
21
,
378
395
(
2019
).
13.
J.
Seino
,
R.
Kageyama
,
M.
Fujinami
,
Y.
Ikabata
, and
H.
Nakai
, “
Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density
,”
J. Chem. Phys.
148
,
241705
(
2018
).
14.
M.
Fujinami
,
R.
Kageyama
,
J.
Seino
,
Y.
Ikabata
, and
H.
Nakai
, “
Orbital-free density functional theory calculation applying semi-local machine-learned kinetic energy density functional and kinetic potential
,”
Chem. Phys. Lett.
748
,
137358
(
2020
).
15.
K.
Ryczko
,
S. J.
Wetzel
,
R. G.
Melko
, and
I.
Tamblyn
, “
Toward orbital-free density functional theory with small data sets and deep learning
,”
J. Chem. Theory Comput.
18
,
1122
1128
(
2022
).
16.
F.
Imoto
,
M.
Imada
, and
A.
Oshiyama
, “
Order-N orbital-free density-functional calculations with machine learning of functional derivatives for semiconductors and metals
,”
Phys. Rev. Res.
3
,
033198
(
2021
).
17.
N.
Thomas
,
T.
Smidt
,
S.
Kearnes
,
L.
Yang
,
L.
Li
,
K.
Kohlhoff
, and
P.
Riley
, “
Tensor field networks: Rotation-and translation-equivariant neural networks for 3D point clouds
,” arXiv:1802.08219 (
2018
).
18.
M.
Geiger
and
T.
Smidt
, “
e3nn: Euclidean neural networks
,” arXiv:2207.09453 (
2022
).
19.
A.
Grisafi
,
D. M.
Wilkins
,
G.
Csányi
, and
M.
Ceriotti
, “
Symmetry-adapted machine learning for tensorial properties of atomistic systems
,”
Phys. Rev. Lett.
120
,
036002
(
2018
).
20.
M.
Weiler
,
M.
Geiger
,
M.
Welling
,
W.
Boomsma
, and
T. S.
Cohen
, “
3D steerable CNNs: Learning rotationally equivariant features in volumetric data
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc.
,
2018
), Vol.
31
.
21.
O.
Treutler
and
R.
Ahlrichs
Efficient molecular numerical integration schemes
,”
J. Chem. Phys.
102
(1),
346
354
(
1995
).
22.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
23.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
24.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
25.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
,”
J. Chem. Phys.
100
,
2975
2988
(
1994
).
26.
R. A.
King
and
N. C.
Handy
, “
Kinetic energy functionals from the Kohn–Sham potential
,”
Phys. Chem. Chem. Phys.
2
,
5049
5056
(
2000
).
27.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
28.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
et al, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
29.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
et al, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
30.
G. K.-L.
Chan
,
A. J.
Cohen
, and
N. C.
Handy
, “
Thomas–Fermi–Dirac–von Weizsäcker models in finite systems
,”
J. Chem. Phys.
114
,
631
(
2001
).
31.
M. S.
Ryley
,
M.
Withnall
,
T. J. P.
Irons
,
T.
Helgaker
, and
A. M.
Teale
, “
Robust all-electron optimization in orbital-free density-functional theory using the trust-region image method
,”
J. Phys. Chem. A
125
,
459
475
(
2021
).
32.
D.
Kraft
, “
A software package for sequential quadratic programming
,” in
Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht
(
Wiss. Berichtswesen d. DFVLR
,
1988
).
33.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
, and
P.
van Mulbregt
,, and
SciPy 1.0 Contributors
, “
SciPy 1.0: Fundamental algorithms for scientific computing in python
,”
Nat. Methods
17
,
261
272
(
2020
).
34.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
35.
E.
Cancès
,
Y.
Maday
, and
B.
Stamm
, “
Domain decomposition for implicit solvation models
,”
J. Chem. Phys.
139
,
054111
(
2013
).
36.
F.
Lipparini
,
B.
Stamm
,
E.
Cances
,
Y.
Maday
, and
B.
Mennucci
, “
Fast domain decomposition algorithm for continuum solvation models: Energy and first derivatives
,”
J. Chem. Theory Comput.
9
,
3637
3648
(
2013
).
37.
F.
Lipparini
,
G.
Scalmani
,
L.
Lagardère
,
B.
Stamm
,
E.
Cancès
,
Y.
Maday
,
J.-P.
Piquemal
,
M. J.
Frisch
, and
B.
Mennucci
, “
Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy
,”
J. Chem. Phys.
141
,
184108
(
2014
).
You do not currently have access to this content.