Molecular dynamics (MD) is the method of choice for understanding the structure, function, and interactions of molecules. However, MD simulations are limited by the strong metastability of many molecules, which traps them in a single conformation basin for an extended amount of time. Enhanced sampling techniques, such as metadynamics and replica exchange, have been developed to overcome this limitation and accelerate the exploration of complex free energy landscapes. In this paper, we propose Vendi Sampling, a replica-based algorithm for increasing the efficiency and efficacy of the exploration of molecular conformation spaces. In Vendi sampling, replicas are simulated in parallel and coupled via a global statistical measure, the Vendi Score, to enhance diversity. Vendi sampling allows for the recovery of unbiased sampling statistics and dramatically improves sampling efficiency. We demonstrate the effectiveness of Vendi sampling in improving molecular dynamics simulations by showing significant improvements in coverage and mixing between metastable states and convergence of free energy estimates for four common benchmarks, including Alanine Dipeptide and Chignolin.

1.
K.
Henzler-Wildman
and
D.
Kern
, “
Dynamic personalities of proteins
,”
Nature
450
,
964
972
(
2007
).
2.
D. E.
Shaw
,
P.
Maragakis
,
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
,
M. P.
Eastwood
,
J. A.
Bank
,
J. M.
Jumper
,
J. K.
Salmon
,
Y.
Shan
, and
W.
Wriggers
, “
Atomic-level characterization of the structural dynamics of proteins
,”
Science
330
,
341
346
(
2010
).
3.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
, “
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
19016
(
2009
).
4.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
, “
How fast-folding proteins fold
,”
Science
334
,
517
520
(
2011
).
5.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
, “
Atomic-level description of ubiquitin folding
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
5915
5920
(
2013
).
6.
K. S.
Chakrabarti
,
S.
Olsson
,
S.
Pratihar
,
K.
Giller
,
K.
Overkamp
,
K. O.
Lee
,
V.
Gapsys
,
K.-S.
Ryu
,
B. L.
de Groot
,
F.
Noé
,
S.
Becker
,
D.
Lee
,
T. R.
Weikl
, and
C.
Griesinger
, “
A litmus test for classifying recognition mechanisms of transiently binding proteins
,”
Nat. Commun.
13
,
3792
(
2022
).
7.
N.
Plattner
and
F.
Noé
, “
Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models
,”
Nat. Commun.
6
,
7653
(
2015
).
8.
I.
Buch
,
T.
Giorgino
, and
G.
De Fabritiis
, “
Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
10184
10189
(
2011
).
9.
N.
Plattner
,
S.
Doerr
,
G.
De Fabritiis
, and
F.
Noé
, “
Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling
,”
Nat. Chem.
9
,
1005
1011
(
2017
).
10.
S.
Olsson
and
F.
Noé
, “
Mechanistic models of chemical exchange induced relaxation in protein NMR
,”
J. Am. Chem. Soc.
139
,
200
210
(
2016
).
11.
F.
Noé
,
S.
Doose
,
I.
Daidone
,
M.
Löllmann
,
M.
Sauer
,
J. D.
Chodera
, and
J. C.
Smith
, “
Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
4822
4827
(
2011
).
12.
N.-V.
Buchete
and
G.
Hummer
, “
Coarse master equations for peptide folding dynamics
,”
J. Phys. Chem. B
112
,
6057
6069
(
2008
).
13.
J.
Cavanagh
,
W. J.
Fairbrother
,
A. G.
Palmer
III
, and
N. J.
Skelton
,
Protein NMR Spectroscopy: Principles and Practice
(
Academic Press
,
1996
).
14.
O.
Opanasyuk
,
A.
Barth
,
T.-O.
Peulen
,
S.
Felekyan
,
S.
Kalinin
,
H.
Sanabria
, and
C. A. M.
Seidel
, “
Unraveling multi-state molecular dynamics in single-molecule FRET experiments. II. Quantitative analysis of multi-state kinetic networks
,”
J. Chem. Phys.
157
,
031501
(
2022
).
15.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
, “
Markov models of molecular kinetics: Generation and validation
,”
J. Chem. Phys.
134
,
174105
(
2011
).
16.
T.
Hempel
,
S.
Olsson
, and
F.
Noé
, “
Markov field models: Scaling molecular kinetics approaches to large molecular machines
,”
Curr. Opin. Struct. Biol.
77
,
102458
(
2022
).
17.
S.
Olsson
and
F.
Noé
, “
Dynamic graphical models of molecular kinetics
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
15001
15006
(
2019
).
18.
J.
Hénin
,
T.
Lelièvre
,
M. R.
Shirts
,
O.
Valsson
, and
L.
Delemotte
, “
Enhanced sampling methods for molecular dynamics simulations [article v1.0]
,”
Living J. Comput. Mol. Sci.
4
,
1583
(
2022
).
19.
C.
Camilloni
,
A.
Cavalli
, and
M.
Vendruscolo
, “
Replica-averaged metadynamics
,”
J. Chem. Theory Comput.
9
,
5610
5617
(
2013
).
20.
C.
Abrams
and
G.
Bussi
, “
Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration
,”
Entropy
16
,
163
199
(
2013
).
21.
H.
Grubmüller
, “
Predicting slow structural transitions in macromolecular systems: Conformational flooding
,”
Phys. Rev. E
52
,
2893
2906
(
1995
).
22.
Y.
Sugita
and
Y.
Okamoto
, “
Replica-exchange molecular dynamics method for protein folding
,”
Chem. Phys. Lett.
314
,
141
151
(
1999
).
23.
R. H.
Swendsen
and
J.-S.
Wang
, “
Replica Monte Carlo simulation of spin-glasses
,”
Phys. Rev. Lett.
57
,
2607
2609
(
1986
).
24.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
25.
P.
Kříž
,
Z.
Šućur
, and
V.
Spiwok
, “
Free-energy surface prediction by flying Gaussian method: Multisystem representation
,”
J. Phys. Chem. B
121
,
10479
10483
(
2017
).
26.
Z.
Šućur
and
V.
Spiwok
, “
Sampling enhancement and free energy prediction by the flying Gaussian method
,”
J. Chem. Theory Comput.
12
,
4644
4650
(
2016
).
27.
A. M.
Ferrenberg
and
R. H.
Swendsen
, “
Optimized Monte Carlo data analysis
,”
Comput. Phys.
3
,
101
104
(
1989
).
28.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
29.
H.
Wu
,
F.
Paul
,
C.
Wehmeyer
, and
F.
Noé
, “
Multiensemble Markov models of molecular thermodynamics and kinetics
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
E3221
E3230
(
2016
).
30.
L. S.
Stelzl
and
G.
Hummer
, “
Kinetics from replica exchange molecular dynamics simulations
,”
J. Chem. Theory Comput.
13
,
3927
3935
(
2017
).
31.
M. M.
Galama
,
H.
Wu
,
A.
Krämer
,
M.
Sadeghi
, and
F.
Noé
, “
Stochastic approximation to MBAR and TRAM: Batchwise free energy estimation
,”
J. Chem. Theory Comput.
19
,
758
766
(
2023
).
32.
V.
Limongelli
,
M.
Bonomi
, and
M.
Parrinello
, “
Funnel metadynamics as accurate binding free-energy method
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
6358
6363
(
2013
).
33.
J. M. L.
Ribeiro
,
P.
Bravo
,
Y.
Wang
, and
P.
Tiwary
, “
Reweighted autoencoded variational Bayes for enhanced sampling (RAVE)
,”
J. Chem. Phys.
149
,
072301
(
2018
).
34.
P.
Tiwary
and
B.
Berne
, “
Spectral gap optimization of order parameters for sampling complex molecular systems
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
2839
2844
(
2016
).
35.
M.
M Sultan
and
V. S.
Pande
, “
tICA-metadynamics: Accelerating metadynamics by using kinetically selected collective variables
,”
J. Chem. Theory Comput.
13
,
2440
2447
(
2017
).
36.
W.
Chen
and
A. L.
Ferguson
, “
Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration
,”
J. Comput. Chem.
39
,
2079
2102
(
2018
).
37.
L.
Bonati
,
G.
Piccini
, and
M.
Parrinello
, “
Deep learning the slow modes for rare events sampling
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2113533118
(
2021
).
38.
F.
Noé
,
S.
Olsson
,
J.
Köhler
, and
H.
Wu
, “
Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning
,”
Science
365
,
eaaw1147
(
2019
).
39.
J.
Köhler
,
L.
Klein
, and
F.
Noé
, “
Equivariant flows: Exact likelihood generative learning for symmetric densities
,” in
International Conference on Machine Learning
(
PMLR
,
2020
), pp.
5361
5370
.
40.
J.
Köhler
,
A.
Krämer
, and
F.
Noé
, “
Smooth normalizing flows
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc.
,
2021
), Vol.
34
,
2796
2809
.
41.
B.
Jing
,
G.
Corso
,
J.
Chang
,
R.
Barzilay
, and
T.
Jaakkola
, “
Torsional diffusion for molecular conformer generation
,” in Neural Information Processing Systems 35 (NeurIPS 2022) (Curran Associates, Inc., 2022).
42.
D.
Friedman
and
A. B.
Dieng
, “
The Vendi Score: A diversity evaluation metric for machine learning
,” arXiv:2210.02410 (
2022
).
43.
M. J.
Ferrarotti
,
S.
Bottaro
,
A.
Pérez-Villa
, and
G.
Bussi
, “
Accurate multiple time step in biased molecular simulations
,”
J. Chem. Theory Comput.
11
,
139
146
(
2014
).
44.
E.
Marinari
and
G.
Parisi
, “
Simulated tempering: A new Monte Carlo scheme
,”
Europhys. Lett.
19
,
451
458
(
1992
).
45.
G.
Hummer
and
J.
Köfinger
, “
Bayesian ensemble refinement by replica simulations and reweighting
,”
J. Chem. Phys.
143
,
243150
(
2015
).
46.
A.
Cavalli
,
C.
Camilloni
, and
M.
Vendruscolo
, “
Molecular dynamics simulations with replica-averaged structural restraints generate structural ensembles according to the maximum entropy principle
,”
J. Chem. Phys.
138
,
094112
(
2013
).
47.
S.
Olsson
and
A.
Cavalli
, “
Quantification of entropy-loss in replica-averaged modeling
,”
J. Chem. Theory Comput.
11
,
3973
3977
(
2015
).
48.
K.
Lindorff-Larsen
,
R. B.
Best
,
M. A.
DePristo
,
C. M.
Dobson
, and
M.
Vendruscolo
, “
Simultaneous determination of protein structure and dynamics
,”
Nature
433
,
128
132
(
2005
).
49.
R. B.
Best
and
M.
Vendruscolo
, “
Determination of protein structures consistent with NMR order parameters
,”
J. Am. Chem. Soc.
126
,
8090
8091
(
2004
).
50.
J. W.
Pitera
and
J. D.
Chodera
, “
On the use of experimental observations to bias simulated ensembles
,”
J. Chem. Theory Comput.
8
,
3445
3451
(
2012
).
51.
B.
Roux
and
J.
Weare
, “
On the statistical equivalence of restrained-ensemble simulations with the maximum entropy method
,”
J. Chem. Phys.
138
,
084107
(
2013
).
52.
M.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
(
Oxford University Press
,
2010
).
53.
P.
Eastman
,
R.
Galvelis
,
J.
Rodriguez-Guerra
,
Y.
Chen
, and
J. D.
Chodera
,
Openmm pytorch plugin
,
2023
.
54.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
,
R. P.
Wiewiora
,
B. R.
Brooks
, and
V. S.
Pande
, “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
55.
B.
Schölkopf
,
A. J.
Smola
,
F.
Bach
et al,
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
(
MIT Press
,
2002
).
56.
P.
Jaini
,
L.
Holdijk
, and
M.
Welling
, “
Learning equivariant energy based models with equivariant stein variational gradient descent
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc.
,
2021
), Vol.
34
, pp.
16727
16737
.
57.
Y.
Chen
,
A.
Krämer
,
N. E.
Charron
,
B. E.
Husic
,
C.
Clementi
, and
F.
Noé
, “
Machine learning implicit solvation for molecular dynamics
,”
J. Chem. Phys.
155
,
084101
(
2021
).
58.
M.
Invernizzi
and
M.
Parrinello
, “
Rethinking metadynamics: From bias potentials to probability distributions
,”
J. Phys. Chem. Lett.
11
,
2731
2736
(
2020
).
59.
J.
Brady
and
M.
Karplus
, “
Configuration entropy of the alanine dipeptide in vacuum and in solution: A molecular dynamics study
,”
J. Am. Chem. Soc.
107
,
6103
6105
(
1985
).
60.
X.
Wu
and
S.
Wang
, “
Self-guided molecular dynamics simulation for efficient conformational search
,”
J. Phys. Chem. B
102
,
7238
7250
(
1998
).
61.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D. E.
Shaw
, “
Improved side-chain torsion potentials for the Amber ff99sb protein force field
,”
Proteins: Struct., Funct., Bioinf.
78
,
1950
1958
(
2010
).
62.
M.
Sobieraj
and
P.
Setny
, “
Granger causality analysis of chignolin folding
,”
J. Chem. Theory Comput.
18
,
1936
1944
(
2022
).
63.
H.
Okumura
, “
Temperature and pressure denaturation of chignolin: Folding and unfolding simulation by multibaric-multithermal molecular dynamics method
,”
Proteins: Struct., Funct., Bioinf.
80
,
2397
2416
(
2012
).
64.
A. D.
MacKerell
, Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
, Jr.
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiórkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins
,”
J. Phys. Chem. B
102
,
3586
3616
(
1998
).
65.
A.
Onufriev
,
D.
Bashford
, and
D. A.
Case
, “
Exploring protein native states and large-scale conformational changes with a modified generalized born model
,”
Proteins: Struct., Funct., Bioinf.
55
,
383
394
(
2004
).
66.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
, “
Identification of slow molecular order parameters for Markov model construction
,”
J. Chem. Phys.
139
,
015102
(
2013
).
67.
C. R.
Schwantes
and
V. S.
Pande
, “
Modeling molecular kinetics with tICA and the kernel trick
,”
J. Chem. Theory Comput.
11
,
600
608
(
2015
).
68.
L.
Mones
,
N.
Bernstein
, and
G.
Csányi
, “
Exploration, sampling, and reconstruction of free energy surfaces with Gaussian process regression
,”
J. Chem. Theory Comput.
12
,
5100
5110
(
2016
).
69.
J.
Debnath
and
M.
Parrinello
, “
Gaussian mixture-based enhanced sampling for statics and dynamics
,”
J. Phys. Chem. Lett.
11
,
5076
5080
(
2020
).
70.
P.
Maragakis
,
A.
van der Vaart
, and
M.
Karplus
, “
Gaussian-mixture umbrella sampling
,”
J. Phys. Chem. B
113
,
4664
4673
(
2009
).
71.
M.
Invernizzi
and
M.
Parrinello
, “
Exploration vs convergence speed in adaptive-bias enhanced sampling
,”
J. Chem. Theory Comput.
18
,
3988
3996
(
2022
).
72.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
, “
Well-tempered metadynamics: A smoothly converging and tunable free-energy method
,”
Phys. Rev. Lett.
100
,
020603
(
2008
).

Supplementary Material

You do not currently have access to this content.