Chirality is a concept that one object is not superimposable on its mirror image by translation and rotation. In particular, chiral plasmonics have been widely investigated due to their excellent optical chiral properties, and have led to numerous applications such as optical polarizing element etc. In this study, we develop a model based on the concept of the interaction between harmonic oscillators to investigate and explain the optical chiral mechanisms of strongly coupled metal nanoparticles (MNPs). The chirality of the scattering, absorption, and photoluminescence spectra are carefully discussed in detail. The results show that the chirality of the system originates not only from the orientations of the MNPs, but also from the different eigen parameters between them. Specifically, the derived three factors contribute to the chirality: the symmetry, the coupling strength, and the coherent superposition of the emitted electric field. This work provides a deeper understanding on the chiral plasmonics and may guide relevant applications in theory.

2.
W.
Wu
and
M.
Pauly
,
Mater. Adv.
3
,
186
(
2022
).
3.
J.
Chen
,
X.
Gao
,
Q.
Zheng
,
J.
Liu
,
D.
Meng
,
H.
Li
,
R.
Cai
,
H.
Fan
,
Y.
Ji
, and
X.
Wu
,
ACS Nano
15
,
15114
(
2021
).
4.
H.
Cheng
,
K.
Liang
,
X.
Deng
,
L.
Jin
,
J.
Shangguan
,
J.
Zhang
,
J.
Guo
, and
L.
Yu
,
Photonics
10
,
251
(
2023
).
5.
H.
He
,
M.
Cen
,
J.
Wang
,
Y.
Xu
,
J.
Liu
,
W.
Cai
,
D.
Kong
,
K.
Li
,
D.
Luo
,
T.
Cao
, and
Y. J.
Liu
,
ACS Appl. Mater. Interfaces
14
,
53981
(
2022
).
6.
N.-N.
Zhang
,
Z.-L.
Shen
,
S.-Y.
Gao
,
F.
Peng
,
Z.-J.
Cao
,
Y.
Wang
,
Z.
Wang
,
W.
Zhang
,
Y.
Yang
,
K.
Liu
, and
T.
Sun
,
Adv. Opt. Mater.
11
,
2203119
(
2023
).
7.
J.
Meng
,
Z.
Zhang
,
W.
Liu
,
Y.
Li
,
Y.
Sun
,
Z.
Lai
, and
T.
Yu
,
Opt. Lett.
47
,
5385
(
2022
).
8.
H.
Zou
and
G. R.
Nash
,
Opt. Mater. Express
12
,
4565
(
2022
).
10.
F.
Zhang
,
B.
Liu
,
Z.
Tian
, and
N.
Zhu
,
Appl. Phys. Express
15
,
112006
(
2022
).
11.
J.
Cai
,
W.
Zhang
,
L.
Xu
,
C.
Hao
,
W.
Ma
,
M.
Sun
,
X.
Wu
,
X.
Qin
,
F. M.
Colombari
,
A. F.
de Moura
,
J.
Xu
,
M. C.
Silva
,
E. B.
Carneiro-Neto
,
W. R.
Gomes
,
R. A. L.
Vallée
,
E. C.
Pereira
,
X.
Liu
,
C.
Xu
,
R.
Klajn
,
N. A.
Kotov
, and
H.
Kuang
,
Nat. Nanotechnol.
17
,
408
(
2022
).
12.
F.
Lorén
,
G. L.
Paravicini-Bagliani
,
S.
Saha
,
J.
Gautier
,
M.
Li
,
C.
Genet
, and
L.
Martín-Moreno
,
Phys. Rev. B
107
,
165128
(
2023
).
13.
B. M.
Maoz
,
Y.
Chaikin
,
A. B.
Tesler
,
O.
Bar Elli
,
Z.
Fan
,
A. O.
Govorov
, and
G.
Markovich
,
Nano Lett.
13
,
1203
(
2013
).
14.
H.
Li
,
X.
Gao
,
C.
Zhang
,
Y.
Ji
,
Z.
Hu
, and
X.
Wu
,
Biosensors
12
,
957
(
2022
).
15.
E. S. A.
Goerlitzer
,
M.
Zapata-Herrera
,
E.
Ponomareva
,
D.
Feller
,
A.
Garcia-Etxarri
,
M.
Karg
,
J.
Aizpurua
, and
N.
Vogel
,
ACS Photonics
10
,
1821
(
2023
).
16.
W.
Yan
,
L.
Xu
,
W.
Ma
,
L.
Liu
,
L.
Wang
,
H.
Kuang
, and
C.
Xu
,
Small
10
,
4293
(
2014
).
17.
T.
Mallat
,
E.
Orglmeister
, and
A.
Baiker
,
Chem. Rev.
107
,
4863
(
2007
).
18.
Z.
Li
,
Q.
Fan
,
Z.
Ye
,
C.
Wu
,
Z.
Wang
, and
Y.
Yin
,
Science
380
,
1384
(
2023
).
19.
G.
Singh
,
H.
Chan
,
A.
Baskin
,
E.
Gelman
,
N.
Repnin
,
P.
Král
, and
R.
Klajn
,
Science
345
,
1149
(
2014
).
20.
K.-J.
Jeong
,
D. K.
Lee
,
V. T.
Tran
,
C.
Wang
,
J.
Lv
,
J.
Park
,
Z.
Tang
, and
J.
Lee
,
ACS Nano
14
,
7152
(
2020
).
21.
Y.
Cheng
and
M.
Sun
,
New J. Phys.
24
,
033026
(
2022
).
22.
Y.
Cheng
and
M.
Sun
,
New J. Phys.
25
,
033028
(
2023
).
23.
D. J.
Griffiths
,
Introduction to Electrodynamics
,
4rd ed.
(
Pearson
,
Cambridge
,
2013
).
24.
Y. S.
Joe
,
A. M.
Satanin
, and
C. S.
Kim
,
Phys. Scr.
74
,
259
(
2006
).
25.
Y.
Cheng
,
W.
Zhang
,
J.
Zhao
,
T.
Wen
,
A.
Hu
,
Q.
Gong
, and
G.
Lu
,
Nanotechnology
29
,
315201
(
2018
).
26.
X.
Yin
,
M.
Schäferling
,
B.
Metzger
, and
H.
Giessen
,
Nano Lett.
13
,
6238
(
2013
).
You do not currently have access to this content.