We discuss the possibility of using circularly polarized luminescence (CPL) as a tool to probe individual triplet spin sublevels that are populated nonadiabatically following photoexcitation. This study is motivated by a mechanism proposed for chirality-induced spin selectivity in which coupled electronic-nuclear dynamics may lead to a non-statistical population of the three triplet sublevels in chiral systems. We find that low-temperature CPL should aid in quantifying the exact spin state/s populated through coupled electronic-nuclear motion in chiral molecules.
REFERENCES
1.
S. K.
Lower
and M. A.
El-Sayed
, “The triplet state and molecular electronic processes in organic molecules
,” Chem. Rev.
66
, 199
–241
(1966
).2.
S.
McGlynn
, T.
Azumi
, and M.
Kinoshita
, Molecular Spectroscopy of the Triplet State
(Prentice-Hall
, 1969
).3.
L.
Hall
, A.
Armstrong
, W.
Moomaw
, and M. A.
El-Sayed
, “Spin-lattice relaxation and the decay of pyrazine phosphorescence at low temperatures
,” J. Chem. Phys.
48
, 1395
–1396
(1968
).4.
M. A.
El-Sayed
, “Proposed method for determining all the rate constants of processes involving the lowest triplet state at low temperature
,” J. Chem. Phys.
52
, 6438
–6440
(1970
).5.
L. H.
Hall
and M. A.
El-Sayed
, “Optical determination of the electron spin–lattice relaxation mechanisms between the zero-field levels of the lowest triplet state
,” J. Chem. Phys.
54
, 4958
–4959
(1971
).6.
L. H.
Hall
and M. A.
El-Sayed
, “Magnetic field dependence of spin-lattice relaxation rates between the triplet state Zeeman levels of pyrazine-d4 at 1 · 6K
,” Mol. Phys.
22
, 361
–364
(1971
).7.
L. H.
Hall
and M. A.
El-Sayed
, “Temperature dependence of the spin-lattice relaxation rates in the triplet state of pyrazine at low temperatures
,” Chem. Phys.
8
, 272
–288
(1975
).8.
Chemically Induced Magnetic Polarization
, edited by L. T.
Muus
, P. W.
Atkins
, K. A.
McLauchlan
, and J. B.
Pedersen
(Springer Netherlands
, 1977
).9.
P. J.
Hore
, K. L.
Ivanov
, and M. R.
Wasielewski
, “Spin chemistry
,” J. Chem. Phys.
152
, 120401
(2020
).10.
A. M.
Brugh
and M. D. E.
Forbes
, “Anomalous chemically induced electron spin polarization in proton-coupled electron transfer reactions: Insight into radical pair dynamics
,” Chem. Sci.
11
, 6268
–6274
(2020
).11.
M.
Mayländer
, S.
Chen
, E. R.
Lorenzo
, M. R.
Wasielewski
, and S.
Richert
, “Exploring photogenerated molecular quartet states as spin qubits and qudits
,” J. Am. Chem. Soc.
143
, 7050
–7058
(2021
).12.
E. E.
Braker
, N. F. M.
Mukthar
, N. D.
Schley
, and G.
Ung
, “Substituent effect on the circularly polarized luminescence of C1-symmetric carbene-copper(I) complexes
,” ChemPhotoChem
5
, 902
–905
(2021
).13.
K.
Dhbaibi
, P.
Morgante
, N.
Vanthuyne
, J.
Autschbach
, L.
Favereau
, and J.
Crassous
, “Low-temperature luminescence in organic helicenes: Singlet versus triplet state circularly polarized emission
,” J. Phys. Chem. Lett.
14
, 1073
–1081
(2023
).14.
R.
Naaman
and D. H.
Waldeck
, “Spintronics and chirality: Spin selectivity in electron transport through chiral molecules
,” Annu. Rev. Phys. Chem.
66
, 263
–281
(2015
).15.
K.
Ray
, S. P.
Ananthavel
, D. H.
Waldeck
, and R.
Naaman
, “Asymmetric scattering of polarized electrons by organized organic films of chiral molecules
,” Science
283
, 814
–816
(1999
).16.
B.
Göhler
, V.
Hamelbeck
, T. Z.
Markus
, M.
Kettner
, G. F.
Hanne
, Z.
Vager
, R.
Naaman
, and H.
Zacharias
, “Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA
,” Science
331
, 894
–897
(2011
).17.
R.
Naaman
, Y.
Paltiel
, and D. H.
Waldeck
, “Chiral induced spin selectivity gives a new twist on spin-control in chemistry
,” Acc. Chem. Res.
53
, 2659
–2667
(2020
).18.
R.
Naaman
, Y.
Paltiel
, and D. H.
Waldeck
, “Chiral molecules and the electron spin
,” Nat. Rev. Chem
3
, 250
–260
(2019
).19.
F.
Evers
, A.
Aharony
, N.
Bar-Gill
, O.
Entin-Wohlman
, P.
Hedegård
, O.
Hod
, P.
Jelinek
, G.
Kamieniarz
, M.
Lemeshko
, K.
Michaeli
, V.
Mujica
, R.
Naaman
, Y.
Paltiel
, S.
Refaely-Abramson
, O.
Tal
, J.
Thijssen
, M.
Thoss
, J. M.
van Ruitenbeek
, L.
Venkataraman
, D. H.
Waldeck
, B.
Yan
, and L.
Kronik
, “Theory of chirality induced spin selectivity: Progress and challenges
,” Adv. Mater.
34
, 2106629
(2022
).20.
M. S.
Zöllner
, S.
Varela
, E.
Medina
, V.
Mujica
, and C.
Herrmann
, “Insight into the origin of chiral-induced spin selectivity from a symmetry analysis of electronic transmission
,” J. Chem. Theory Comput.
16
, 2914
–2929
(2020
).21.
S.
Yeganeh
, M. A.
Ratner
, E.
Medina
, and V.
Mujica
, “Chiral electron transport: Scattering through helical potentials
,” J. Chem. Phys.
131
, 014707
(2009
).22.
J.
Fransson
, “Vibrational origin of exchange splitting and chiral-induced spin selectivity
,” Phys. Rev. B
102
, 235416
(2020
).23.
X.
Bian
, Y.
Wu
, H.-H.
Teh
, Z.
Zhou
, H.-T.
Chen
, and J. E.
Subotnik
, “Modeling nonadiabatic dynamics with degenerate electronic states, intersystem crossing, and spin separation: A key goal for chemical physics
,” J. Chem. Phys.
154
, 110901
(2021
).24.
Y.
Wu
and J. E.
Subotnik
, “Electronic spin separation induced by nuclear motion near conical intersections
,” Nat. Commun.
12
, 700
(2021
).25.
N.
Steinberg
, A.
Gafni
, and I. Z.
Steinberg
, “Measurement of the optical activity of triplet-singlet transitions. The circular polarization of phosphorescence of camphorquinone and benzophenone
,” J. Am. Chem. Soc.
103
, 1636
–1640
(1981
).26.
E. M.
Sánchez-Carnerero
, A. R.
Agarrabeitia
, F.
Moreno
, B. L.
Maroto
, G.
Muller
, M. J.
Ortiz
, and S.
de la Moya
, “Circularly polarized luminescence from simple organic molecules
,” Chem. - Eur. J.
21
, 13488
–13500
(2015
).27.
M. A.
El-Sayed
, “Triplet state. Its radiative and nonradiative properties
,” Acc. Chem. Res.
1
, 8
–16
(1968
).28.
C.
García-Ruiz
, M. J.
Scholtes
, F.
Ariese
, and C.
Gooijer
, “Enantioselective detection of chiral phosphorescent analytes in cyclodextrin complexes
,” Talanta
66
, 641
–645
(2005
).29.
I.
Lammers
, J.
Buijs
, F.
Ariese
, and C.
Gooijer
, “Sensitized enantioselective laser-induced phosphorescence detection in chiral capillary electrophoresis
,” Anal. Chem.
82
, 9410
–9417
(2010
).30.
N.
Berova
, K.
Nakanishi
, and R. W.
Woody
, Circular Dichroism: Principles and Applications
(John Wiley & Sons
, 2000
).31.
I.
Warnke
and F.
Furche
, “Circular dichroism: Electronic
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
, 150
–166
(2012
).32.
S.
Hirata
and M.
Head-Gordon
, “Time-dependent density functional theory within the Tamm–Dancoff approximation
,” Chem. Phys. Lett.
314
, 291
–299
(1999
).33.
A. D.
Becke
, “Density-functional thermochemistry. III. The role of exact exchange
,” J. Chem. Phys.
98
, 5648
–5652
(1993
).34.
C.
Lee
, W.
Yang
, and R. G.
Parr
, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,” Phys. Rev. B
37
, 785
–789
(1988
).35.
E.
Epifanovsky
, A. T. B.
Gilbert
, X.
Feng
, J.
Lee
, Y.
Mao
, N.
Mardirossian
, P.
Pokhilko
, A. F.
White
, M. P.
Coons
, A. L.
Dempwolff
, Z.
Gan
, D.
Hait
, P. R.
Horn
, L. D.
Jacobson
, I.
Kaliman
, J.
Kussmann
, A. W.
Lange
, K. U.
Lao
, D. S.
Levine
, J.
Liu
, S. C.
McKenzie
, A. F.
Morrison
, K. D.
Nanda
, F.
Plasser
, D. R.
Rehn
, M. L.
Vidal
, Z.-Q.
You
, Y.
Zhu
, B.
Alam
, B. J.
Albrecht
, A.
Aldossary
, E.
Alguire
, J. H.
Andersen
, V.
Athavale
, D.
Barton
, K.
Begam
, A.
Behn
, N.
Bellonzi
, Y. A.
Bernard
, E. J.
Berquist
, H. G. A.
Burton
, A.
Carreras
, K.
Carter-Fenk
, R.
Chakraborty
, A. D.
Chien
, K. D.
Closser
, V.
Cofer-Shabica
, S.
Dasgupta
, M.
de Wergifosse
, J.
Deng
, M.
Diedenhofen
, H.
Do
, S.
Ehlert
, P.-T.
Fang
, S.
Fatehi
, Q.
Feng
, T.
Friedhoff
, J.
Gayvert
, Q.
Ge
, G.
Gidofalvi
, M.
Goldey
, J.
Gomes
, C. E.
González-Espinoza
, S.
Gulania
, A. O.
Gunina
, M. W. D.
Hanson-Heine
, P. H. P.
Harbach
, A.
Hauser
, M. F.
Herbst
, M.
Hernández Vera
, M.
Hodecker
, Z. C.
Holden
, S.
Houck
, X.
Huang
, K.
Hui
, B. C.
Huynh
, M.
Ivanov
, Á.
Jász
, H.
Ji
, H.
Jiang
, B.
Kaduk
, S.
Kähler
, K.
Khistyaev
, J.
Kim
, G.
Kis
, P.
Klunzinger
, Z.
Koczor-Benda
, J. H.
Koh
, D.
Kosenkov
, L.
Koulias
, T.
Kowalczyk
, C. M.
Krauter
, K.
Kue
, A.
Kunitsa
, T.
Kus
, I.
Ladjánszki
, A.
Landau
, K. V.
Lawler
, D.
Lefrancois
, S.
Lehtola
, R. R.
Li
, Y.-P.
Li
, J.
Liang
, M.
Liebenthal
, H.-H.
Lin
, Y.-S.
Lin
, F.
Liu
, K.-Y.
Liu
, M.
Loipersberger
, A.
Luenser
, A.
Manjanath
, P.
Manohar
, E.
Mansoor
, S. F.
Manzer
, S.-P.
Mao
, A. V.
Marenich
, T.
Markovich
, S.
Mason
, S. A.
Maurer
, P. F.
McLaughlin
, M. F. S. J.
Menger
, J.-M.
Mewes
, S. A.
Mewes
, P.
Morgante
, J. W.
Mullinax
, K. J.
Oosterbaan
, G.
Paran
, A. C.
Paul
, S. K.
Paul
, F.
Pavošević
, Z.
Pei
, S.
Prager
, E. I.
Proynov
, Á.
Rák
, E.
Ramos-Cordoba
, B.
Rana
, A. E.
Rask
, A.
Rettig
, R. M.
Richard
, F.
Rob
, E.
Rossomme
, T.
Scheele
, M.
Scheurer
, M.
Schneider
, N.
Sergueev
, S. M.
Sharada
, W.
Skomorowski
, D. W.
Small
, C. J.
Stein
, Y.-C.
Su
, E. J.
Sundstrom
, Z.
Tao
, J.
Thirman
, G. J.
Tornai
, T.
Tsuchimochi
, N. M.
Tubman
, S. P.
Veccham
, O.
Vydrov
, J.
Wenzel
, J.
Witte
, A.
Yamada
, K.
Yao
, S.
Yeganeh
, S. R.
Yost
, A.
Zech
, I. Y.
Zhang
, X.
Zhang
, Y.
Zhang
, D.
Zuev
, A.
Aspuru-Guzik
, A. T.
Bell
, N. A.
Besley
, K. B.
Bravaya
, B. R.
Brooks
, D.
Casanova
, J.-D.
Chai
, S.
Coriani
, C. J.
Cramer
, G.
Cserey
, A. E.
DePrince
, R. A.
DiStasio
, A.
Dreuw
, B. D.
Dunietz
, T. R.
Furlani
, W. A.
Goddard
, S.
Hammes-Schiffer
, T.
Head-Gordon
, W. J.
Hehre
, C.-P.
Hsu
, T.-C.
Jagau
, Y.
Jung
, A.
Klamt
, J.
Kong
, D. S.
Lambrecht
, W.
Liang
, N. J.
Mayhall
, C. W.
McCurdy
, J. B.
Neaton
, C.
Ochsenfeld
, J. A.
Parkhill
, R.
Peverati
, V. A.
Rassolov
, Y.
Shao
, L. V.
Slipchenko
, T.
Stauch
, R. P.
Steele
, J. E.
Subotnik
, A. J. W.
Thom
, A.
Tkatchenko
, D. G.
Truhlar
, T.
Van Voorhis
, T. A.
Wesolowski
, K. B.
Whaley
, H. L.
Woodcock
, P. M.
Zimmerman
, S.
Faraji
, P. M. W.
Gill
, M.
Head-Gordon
, J. M.
Herbert
, and A. I.
Krylov
, “Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,” J. Chem. Phys.
155
, 084801
(2021
).36.
Q.
Ou
and J. E.
Subotnik
, “Electronic relaxation in benzaldehyde evaluated via TD-DFT and localized diabatization: Intersystem crossings, conical intersections, and phosphorescence
,” J. Phys. Chem. C
117
, 19839
–19849
(2013
).37.
N.
Bellonzi
, E.
Alguire
, S.
Fatehi
, Y.
Shao
, and J. E.
Subotnik
, “TD-DFT spin-adiabats with analytic nonadiabatic derivative couplings
,” J. Chem. Phys.
152
, 044112
(2020
).38.
Note that so that .
39.
J. A.
Schauerte
, D. G.
Steel
, and A.
Gafni
, “Time-resolved circularly polarized protein phosphorescence
,” Proc. Natl. Acad. Sci. U. S. A.
89
, 10154
–10158
(1992
).40.
U.
Hananel
, G.
Schwartz
, G.
Paiss
, L.
Arrico
, F.
Zinna
, L.
Di Bari
, O.
Cheshnovsky
, and G.
Markovich
, “Time-resolved circularly polarized luminescence of Eu3+-based systems
,” Chirality
33
, 124
–133
(2021
).41.
Y.
Wu
and J. E.
Subotnik
, “Semiclassical description of nuclear dynamics moving through complex-valued single avoided crossings of two electronic states
,” J. Chem. Phys.
154
, 234101
(2021
).42.
Y.
Wu
, X.
Bian
, J. I.
Rawlinson
, R. G.
Littlejohn
, and J. E.
Subotnik
, “A phase-space semiclassical approach for modeling nonadiabatic nuclear dynamics with electronic spin
,” J. Chem. Phys.
157
, 011101
(2022
).43.
X.
Bian
, Y.
Wu
, H.-H.
Teh
, and J. E.
Subotnik
, “Incorporating Berry force effects into the fewest switches surface-hopping algorithm: Intersystem crossing and the case of electronic degeneracy
,” J. Chem. Theory Comput.
18
, 2075
–2090
(2022
).44.
X.
Bian
, Y.
Wu
, J.
Rawlinson
, R. G.
Littlejohn
, and J. E.
Subotnik
, “Modeling spin-dependent nonadiabatic dynamics with electronic degeneracy: A phase-space surface-hopping method
,” J. Phys. Chem. Lett.
13
, 7398
–7404
(2022
).45.
A.
Krotz
and R.
Tempelaar
, “Treating geometric phase effects in nonadiabatic dynamics
,” arXiv:2206.13539 (2023
).46.
E.
San Sebastian
, J.
Cepeda
, U.
Huizi-Rayo
, A.
Terenzi
, D.
Finkelstein-Shapiro
, D.
Padro
, J. I.
Santos
, J. M.
Matxain
, J. M.
Ugalde
, and V.
Mujica
, “Enantiospecific response in cross-polarization solid-state nuclear magnetic resonance of optically active metal organic frameworks
,” J. Am. Chem. Soc.
142
, 17989
–17996
(2020
).47.
T. P.
Fay
and D. T.
Limmer
, “Origin of chirality induced spin selectivity in photoinduced electron transfer
,” Nano Lett.
21
, 6696
–6702
(2021
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.