The equilibrium association of transmembrane proteins plays a fundamental role in membrane protein function and cellular signaling. While the study of the equilibrium binding of single pass transmembrane proteins has received significant attention in experiment and simulation, the accurate assessment of equilibrium association constants remains a challenge to experiment and simulation. In experiment, there remain wide variations in association constants derived from experimental studies of the most widely studied transmembrane proteins. In simulation, state-of-the art methods have failed to adequately sample the thermodynamically relevant structures of the dimer state ensembles using coarse-grained models. In addition, all-atom force fields often fail to accurately assess the relative free energies of the dimer and monomer states. Given the importance of this fundamental biophysical process, it is essential to address these shortcomings. In this work, we establish an effective computational protocol for the calculation of equilibrium association constants for transmembrane homodimer formation. A set of transmembrane protein homodimers, used in the parameterization of the MARTINI v3 force field, are simulated using metadynamics, based on three collective variables. The method is found to be accurate and computationally efficient, providing a standard to be used in the future simulation studies using coarse-grained or all-atom models.

1.
A.
Majumder
,
N.
Vuksanovic
,
L. C.
Ray
,
H. M.
Bernstein
,
K. N.
Allen
,
B.
Imperiali
, and
J. E.
Straub
, “
Synergistic computational and experimental studies of a phosphoglycosyl transferase membrane/ligand ensemble
,” bioRxiv:2023.05.07.539694 (
2023
).
2.
J.-L.
Popot
and
D. M.
Engelman
, “
Helical membrane protein folding, stability, and evolution
,”
Annu. Rev. Biochem.
69
,
881
922
(
2000
).
3.
G. B.
Irvine
,
O. M.
El-Agnaf
,
G. M.
Shankar
, and
D. M.
Walsh
, “
Protein aggregation in the brain: The molecular basis for Alzheimer’s and Parkinson’s diseases
,”
Mol. Med.
14
,
451
464
(
2008
).
4.
P. H.
Nguyen
,
A.
Ramamoorthy
,
B. R.
Sahoo
,
J.
Zheng
,
P.
Faller
,
J. E.
Straub
,
L.
Dominguez
,
J.-E.
Shea
,
N. V.
Dokholyan
,
A.
De Simone
,
B.
Ma
,
R.
Nussinov
,
S.
Najafi
,
S. T.
Ngo
,
A.
Loquet
,
M.
Chiricotto
,
P.
Ganguly
,
J.
McCarty
,
M. S.
Li
,
C.
Hall
,
Y.
Wang
,
Y.
Miller
,
S.
Melchionna
,
B.
Habenstein
,
S.
Timr
,
J.
Chen
,
B.
Hnath
,
B.
Strodel
,
R.
Kayed
,
S.
Lesné
,
G.
Wei
,
F.
Sterpone
,
A. J.
Doig
, and
P.
Derreumaux
, “
Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis
,”
Chem. Rev.
121
,
2545
2647
(
2021
).
5.
C.
Chipot
, “
Frontiers in free-energy calculations of biological systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
71
89
(
2014
).
6.
J. C.
Gumbart
,
B.
Roux
, and
C.
Chipot
, “
Standard binding free energies from computer simulations: What is the best strategy?
,”
J. Chem. Theory Comput.
9
,
794
802
(
2013
).
7.
J. C.
Gumbart
,
B.
Roux
, and
C.
Chipot
, “
Efficient determination of protein–protein standard binding free energies from first principles
,”
J. Chem. Theory Comput.
9
,
3789
3798
(
2013
).
8.
A.
Filippov
,
G.
Orädd
, and
G.
Lindblom
, “
The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers
,”
Biophys. J.
84
,
3079
3086
(
2003
).
9.
M.
Lelimousin
,
V.
Limongelli
, and
M. S.
Sansom
, “
Conformational changes in the epidermal growth factor receptor: Role of the transmembrane domain investigated by coarse-grained metadynamics free energy calculations
,”
J. Am. Chem. Soc.
138
,
10611
10622
(
2016
).
10.
J.
Domański
,
G.
Hedger
,
R. B.
Best
,
P. J.
Stansfeld
, and
M. S.
Sansom
, “
Convergence and sampling in determining free energy landscapes for membrane protein association
,”
J. Phys. Chem. B
121
,
3364
3375
(
2017
).
11.
A.
Majumder
and
J. E.
Straub
, “
Addressing the excessive aggregation of membrane proteins in the MARTINI model
,”
J. Chem. Theory Comput.
17
,
2513
2521
(
2021
).
12.
A.
Majumder
,
S.
Kwon
, and
J. E.
Straub
, “
On computing equilibrium binding constants for protein–protein association in membranes
,”
J. Chem. Theory Comput.
18
,
3961
3971
(
2022
).
13.
V.
Leone
,
F.
Marinelli
,
P.
Carloni
, and
M.
Parrinello
, “
Targeting biomolecular flexibility with metadynamics
,”
Curr. Opin. Struct. Biol.
20
,
148
154
(
2010
).
14.
B.
Roux
, “
The calculation of the potential of mean force using computer simulations
,”
Comput. Phys. Commun.
91
,
275
282
(
1995
).
15.
J.
Comer
,
J. C.
Gumbart
,
J.
Hénin
,
T.
Lelièvre
,
A.
Pohorille
, and
C.
Chipot
, “
The adaptive biasing force method: Everything you always wanted to know but were afraid to ask
,”
J. Phys. Chem. B
119
,
1129
1151
(
2015
).
16.
J.
Domański
,
M. S.
Sansom
,
P. J.
Stansfeld
, and
R. B.
Best
, “
Balancing force field protein–lipid interactions to capture transmembrane helix–helix association
,”
J. Chem. Theory Comput.
14
,
1706
1715
(
2018
).
17.
D.
Sengupta
and
S. J.
Marrink
, “
Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes
,”
Phys. Chem. Chem. Phys.
12
,
12987
12996
(
2010
).
18.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
, “
Well-tempered metadynamics: A smoothly converging and tunable free-energy method
,”
Phys. Rev. Lett.
100
,
020603
(
2008
).
19.
K. R.
MacKenzie
,
J. H.
Prestegard
, and
D. M.
Engelman
, “
A transmembrane helix dimer: Structure and implications
,”
Science
276
,
131
133
(
1997
).
20.
E. V.
Bocharov
,
M. L.
Mayzel
,
P. E.
Volynsky
,
M. V.
Goncharuk
,
Y. S.
Ermolyuk
,
A. A.
Schulga
,
E. O.
Artemenko
,
R. G.
Efremov
, and
A. S.
Arseniev
, “
Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1
,”
J. Biol. Chem.
283
,
29385
29395
(
2008
).
21.
P. C.
Souza
,
R.
Alessandri
,
J.
Barnoud
,
S.
Thallmair
,
I.
Faustino
,
F.
Grünewald
,
I.
Patmanidis
,
H.
Abdizadeh
,
B. M.
Bruininks
,
T. A.
Wassenaar
,
P. C.
Kroon
,
J.
Melcr
,
V.
Nieto
,
V.
Corradi
,
H. M.
Khan
,
J.
Domański
,
M.
Javanainen
,
H.
Martinez-Seara
,
N.
Reuter
,
R. B.
Best
,
I.
Vattulainen
,
L.
Monticelli
,
X.
Periole
,
D. P.
Tieleman
,
A. H.
de Vries
, and
S. J.
Marrink
, “
Martini 3: A general purpose force field for coarse-grained molecular dynamics
,”
Nat. Methods
18
,
382
388
(
2021
).
22.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
PLUMED 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
23.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
Software X
1–2
,
19
25
(
2015
).
24.
M.
Chavent
,
A. P.
Chetwynd
,
P. J.
Stansfeld
, and
M. S.
Sansom
, “
Dimerization of the EphA1 receptor tyrosine kinase transmembrane domain: Insights into the mechanism of receptor activation
,”
Biochemistry
53
,
6641
6652
(
2014
).
25.
N.
Castillo
,
L.
Monticelli
,
J.
Barnoud
, and
D. P.
Tieleman
, “
Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers
,”
Chem. Phys. Lipids
169
,
95
105
(
2013
).
26.
J.
Domański
,
M. S.
Sansom
,
P. J.
Stansfeld
, and
R. B.
Best
, “
Atomistic mechanism of transmembrane helix association
,”
PLoS Comput. Biol.
16
,
e1007919
(
2020
).
27.
K. G.
Fleming
, “
Standardizing the free energy change of transmembrane helix–helix interactions
,”
J. Mol. Biol.
323
,
563
571
(
2002
).
28.
K. G.
Fleming
,
A. L.
Ackerman
, and
D. M.
Engelman
, “
The effect of point mutations on the free energy of transmembrane α-helix dimerization
,”
J. Mol. Biol.
272
,
266
275
(
1997
).
29.
A.
Nash
,
R.
Notman
, and
A. M.
Dixon
, “
De novo design of transmembrane helix–helix interactions and measurement of stability in a biological membrane
,”
Biochim. Biophys. Acta, Biomembr.
1848
,
1248
1257
(
2015
).
30.
H.
Hong
,
T. M.
Blois
,
Z.
Cao
, and
J. U.
Bowie
, “
Method to measure strong protein–protein interactions in lipid bilayers using a steric trap
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
19802
19807
(
2010
).
31.
S.
Sarabipour
and
K.
Hristova
, “
Glycophorin a transmembrane domain dimerization in plasma membrane vesicles derived from CHO, HEK 293T, and A431 cells
,”
Biochim. Biophys. Acta, Biomembr.
1828
,
1829
1833
(
2013
).
32.
L.
Chen
,
L.
Novicky
,
M.
Merzlyakov
,
T.
Hristov
, and
K.
Hristova
, “
Measuring the energetics of membrane protein dimerization in mammalian membranes
,”
J. Am. Chem. Soc.
132
,
3628
3635
(
2010
).
33.
L.
Janosi
,
A.
Prakash
, and
M.
Doxastakis
, “
Lipid-modulated sequence-specific association of glycophorin A in membranes
,”
Biophys. J.
99
,
284
292
(
2010
).
34.
J.
Henin
,
A.
Pohorille
, and
C.
Chipot
, “
Insights into the recognition and association of transmembrane α-helices. The free energy of α-helix dimerization in glycophorin A
,”
J. Am. Chem. Soc.
127
,
8478
8484
(
2005
).
35.
M.
Javanainen
,
H.
Martinez-Seara
, and
I.
Vattulainen
, “
Excessive aggregation of membrane proteins in the Martini model
,”
PLoS One
12
,
e0187936
(
2017
).
36.
E. O.
Artemenko
,
N. S.
Egorova
,
A. S.
Arseniev
, and
A. V.
Feofanov
, “
Transmembrane domain of EphA1 receptor forms dimers in membrane-like environment
,”
Biochim. Biophys. Acta, Biomembr.
1778
,
2361
2367
(
2008
).
37.
L. V.
Schäfer
,
D. H.
de Jong
,
A.
Holt
,
A. J.
Rzepiela
,
A. H.
de Vries
,
B.
Poolman
,
J. A.
Killian
, and
S. J.
Marrink
, “
Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
1343
1348
(
2011
).
38.
Y.
Yano
and
K.
Matsuzaki
, “
Measurement of thermodynamic parameters for hydrophobic mismatch 1: Self-association of a transmembrane helix
,”
Biochemistry
45
,
3370
3378
(
2006
).
39.
H.
Luo
and
K.
Sharp
, “
On the calculation of absolute macromolecular binding free energies
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
10399
10404
(
2002
).
40.
E.
Duboué-Dijon
and
J.
Hénin
, “
Building intuition for binding free energy calculations: Bound state definition, restraints, and symmetry
,”
J. Chem. Phys.
154
,
204101
(
2021
).
41.
J.
Henin
,
A.
Pohorille
, and
C.
Chipot
, “
Insights into the recognition and association of transmembrane α-helices. The free energy of α-helix dimerization in glycophorin A
,”
J. Am. Chem. Soc.
132
,
9510
(
2010
).
42.
J. S.
Hub
,
B. L.
De Groot
, and
D.
van der Spoel
, “
g_wham—A free weighted histogram analysis implementation including robust error and autocorrelation estimates
,”
J. Chem. Theory Comput.
6
,
3713
3720
(
2010
).
43.
R.
Trenker
,
M. E.
Call
, and
M. J.
Call
, “
Crystal structure of the glycophorin a transmembrane dimer in lipidic cubic phase
,”
J. Am. Chem. Soc.
137
,
15676
15679
(
2015
).
44.
A. R.
Sahoo
,
P. C.
Souza
,
Z.
Meng
, and
M.
Buck
, “
Transmembrane dimers of type 1 receptors sample alternate configurations: MD simulations using coarse grain Martini 3 versus AlphaFold2 Multimer
,”
Structure
31
,
735
745.e2
(
2023
).

Supplementary Material

You do not currently have access to this content.