We apply an Ising-type model to estimate the bandgaps of the polytypes of group IV elements (C, Si, and Ge) and binary compounds of groups: IV–IV (SiC, GeC, and GeSi), and III–V (nitride, phosphide, and arsenide of B, Al, and Ga). The models use reference bandgaps of the simplest polytypes comprising 2–6 bilayers calculated with the hybrid density functional approximation, HSE06. We report four models capable of estimating bandgaps of nine polytypes containing 7 and 8 bilayers with an average error of ≲0.05 eV. We apply the best model with an error of <0.04 eV to predict the bandgaps of 497 polytypes with up to 15 bilayers in the unit cell, providing a comprehensive view of the variation in the electronic structure with the degree of hexagonality of the crystal structure. Within our enumeration, we identify four rhombohedral polytypes of SiC—9R, 12R, 15R(1), and 15R(2)—and perform detailed stability and band structure analysis. Of these, 15R(1) that has not been experimentally characterized has the widest bandgap (>3.4 eV); phonon analysis and cohesive energy reveal 15R(1)-SiC to be metastable. Additionally, we model the energies of valence and conduction bands of the rhombohedral SiC phases at the high-symmetry points of the Brillouin zone and predict band structure characteristics around the Fermi level. The models presented in this study may aid in identifying polytypic phases suitable for various applications, such as the design of wide-gap materials, that are relevant to high-voltage applications. In particular, the method holds promise for forecasting electronic properties of long-period and ultra-long-period polytypes for which accurate first-principles modeling is computationally challenging.

1.
J. P.
Perdew
,
W.
Yang
,
K.
Burke
,
Z.
Yang
,
E. K.
Gross
,
M.
Scheffler
,
G. E.
Scuseria
,
T. M.
Henderson
,
I. Y.
Zhang
,
A.
Ruzsinszky
et al,
Proc. Natl. Acad. Sci. U. S. A.
114
,
2801
(
2017
).
2.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. Lett.
51
,
1884
(
1983
).
3.
J. P.
Perdew
and
A.
Ruzsinszky
,
Eur. Phys. J. B
91
,
108
(
2018
).
4.
J. P.
Perdew
and
A.
Ruzsinszky
,
Int. J. Quantum Chem.
110
,
2801
(
2010
).
5.
J. P.
Perdew
,
A.
Ruzsinszky
,
L. A.
Constantin
,
J.
Sun
, and
G. I.
Csonka
,
J. Chem. Theory Comput.
5
,
902
(
2009
).
6.
T.
Mizokawa
and
A.
Fujimori
,
Phys. Rev. B
54
,
5368
(
1996
).
7.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
8.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
9.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
10.
M. K.
Chan
and
G.
Ceder
,
Phys. Rev. Lett.
105
,
196403
(
2010
).
11.
P.
Verma
and
D. G.
Truhlar
,
Theor. Chim. Acta
135
,
182
(
2016
).
12.
R.
Ramakrishnan
,
A. V.
Matveev
, and
N.
Rösch
,
Chem. Phys. Lett.
468
,
158
(
2009
).
13.
H. J.
Kulik
,
J. Chem. Phys.
142
,
240901
(
2015
).
14.
Á.
Morales-García
,
R.
Valero
, and
F.
Illas
,
J. Phys. Chem. C
121
,
18862
(
2017
).
15.
J.
Lee
,
A.
Seko
,
K.
Shitara
,
K.
Nakayama
, and
I.
Tanaka
,
Phys. Rev. B
93
,
115104
(
2016
).
16.
G. S.
Na
,
S.
Jang
,
Y.-L.
Lee
, and
H.
Chang
,
J. Phys. Chem. A
124
,
10616
(
2020
).
17.
J. R.
Moreno
,
J.
Flick
, and
A.
Georges
,
Phys. Rev. Mater.
5
,
083802
(
2021
).
18.
L. C.
Lentz
and
A. M.
Kolpak
,
J. Phys.: Condens. Matter
32
,
155901
(
2020
).
19.
L.
Zhang
,
T.
Su
,
M.
Li
,
F.
Jia
,
S.
Hu
,
P.
Zhang
, and
W.
Ren
,
Mater. Today Commun.
33
,
104630
(
2022
).
20.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
Von Lilienfeld
,
J. Chem. Theory Comput.
11
,
2087
(
2015
).
21.
P.
Borlido
,
J.
Schmidt
,
A. W.
Huran
,
F.
Tran
,
M. A.
Marques
, and
S.
Botti
,
npj Comput. Mater.
6
,
96
(
2020
).
22.
Q.
Wu
,
B.
He
,
T.
Song
,
J.
Gao
, and
S.
Shi
,
Comput. Mater. Sci.
125
,
243
(
2016
).
23.
D. B.
Laks
,
L.
Ferreira
,
S.
Froyen
, and
A.
Zunger
,
Phys. Rev. B
46
,
12587
(
1992
).
24.
26.
S.
Limpijumnong
and
W. R.
Lambrecht
,
Phys. Rev. B
57
,
12017
(
1998
).
27.
C.
Panse
,
D.
Kriegner
, and
F.
Bechstedt
,
Phys. Rev. B
84
,
075217
(
2011
).
28.
C.
Raffy
,
J.
Furthmüller
, and
F.
Bechstedt
,
Phys. Rev. B
66
,
075201
(
2002
).
29.
K.
Moriguchi
,
T.
Miyakawa
,
S.
Ogane
,
R.
Sato
,
K.
Tsutsui
, and
Y.
Tanaka
,
MRS Adv.
6
,
163
(
2021
).
30.
M.
Keller
,
A.
Belabbes
,
J.
Furthmüller
,
F.
Bechstedt
, and
S.
Botti
,
Phys. Rev. Mater.
7
,
064601
(
2023
).
31.
K.
Kobayashi
and
S.
Komatsu
,
J. Phys. Soc. Jpn.
81
,
024714
(
2012
).
32.
K.
Moriguchi
,
K.
Kamei
,
K.
Kusunoki
,
N.
Yashiro
,
N.
Okada
, and
N.
ada
,
J. Mater. Res.
28
,
7
(
2013
).
33.
F.
Bechstedt
and
A.
Belabbes
,
J. Phys.: Condens. Matter
25
,
273201
(
2013
).
34.
J.
Smith
,
J.
Yeomans
, and
V.
Heine
,
Modulated Structure Materials
(
Springer
,
1984
), pp.
95
105
.
35.
36.
V.
Heine
,
Computation of Electronic Structure: Its Role in the Development of Solid State Physics
(
Springer US
,
Boston, MA
,
1985
), pp.
1
5
, ISBN: ISBN 978-1-4757-0899-8.
37.
C.
Cheng
,
R.
Needs
,
V.
Heine
, and
I.
Jones
,
Phase Transitions
16
,
263
(
1989
).
38.
C.
Cheng
,
V.
Heine
, and
I.
Jones
,
J. Phys.: Condens. Matter
2
,
5097
(
1990
).
39.
P.
Kayastha
and
R.
Ramakrishnan
,
J. Chem. Phys.
154
,
061102
(
2021
).
40.
I.
Pallikara
,
P.
Kayastha
,
J. M.
Skelton
, and
L. D.
Whalley
,
Electron. Struct.
4
,
033002
(
2022
).
41.
G. S.
Rohrer
,
Structure and Bonding in Crystalline Materials
(
Cambridge University Press
,
2001
).
42.
R. J.
Tilley
,
Crystals and Crystal Structures
(
John Wiley & Sons
,
2020
).
43.
E.
Halac
,
E.
Burgos
, and
H.
Bonadeo
,
Phys. Rev. B
65
,
125202
(
2002
).
44.
G.
Polya
and
R. C.
Read
,
Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds
(
Springer Science & Business Media
,
2012
).
45.
S.
Chakraborty
,
P.
Kayastha
, and
R.
Ramakrishnan
,
J. Chem. Phys.
150
,
114106
(
2019
).
46.
B. E.
Douglas
and
C. A.
Hollingsworth
,
Symmetry in Bonding and Spectra: An Introduction
(
Academic Press
,
2012
).
47.
U.
Müller
,
Symmetry Relationships between Crystal Structures: Applications of Crystallographic Group Theory in Crystal Chemistry
(
OUP Oxford
,
2013
), Vol.
18
.
49.
M.
Lothaire
,
Combinatorics on Words
(
Cambridge University Press
,
1997
), Vol.
17
.
50.
A.
Guinier
,
G.
Bokij
,
K.
Boll-Dornberger
,
J.
Cowley
,
S.
Ďurovič
,
H.
Jagodzinski
,
P.
Krishna
,
P.
De Wolff
,
B.
Zvyagin
,
D.
Cox
et al,
Acta Cryst.
40
,
399
(
1984
).
51.
L. S.
Ramsdell
,
Am. Mineral.
32
,
64
(
1947
).
52.
A. L.
Ortiz
,
F.
Sánchez-Bajo
,
F. L.
Cumbrera
, and
F.
Guiberteau
,
J. Appl. Cryst.
46
,
242
(
2013
).
53.
C.
Cheng
,
R.
Needs
, and
V.
Heine
,
J. Phys. C: Solid State Phys.
21
,
1049
(
1988
).
54.
G. D.
Price
and
J.
Yeomans
,
Acta Cryst.
40
,
448
(
1984
).
55.
M.
Plumer
,
K.
Hood
, and
A.
Caillé
,
J. Phys. C: Solid State Phys.
21
,
4189
(
1988
).
56.
A. H.
Gomes de Mesquita
,
Acta Cryst.
23
,
610
(
1967
).
57.
A.
Bauer
,
J.
Kräußlich
,
L.
Dressler
,
P.
Kuschnerus
,
J.
Wolf
,
K.
Goetz
,
P.
Käckell
,
J.
Furthmüller
, and
F.
Bechstedt
,
Phys. Rev. B
57
,
2647
(
1998
).
58.
Z.-h.
Yang
,
H.
Peng
,
J.
Sun
, and
J. P.
Perdew
,
Phys. Rev. B
93
,
205205
(
2016
).
59.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
, and
R. L.
Martin
,
J. Chem. Phys.
123
,
174101
(
2005
).
60.
W.
Backes
,
P.
Bobbert
, and
W.
Van Haeringen
,
Phys. Rev. B
49
,
7564
(
1994
).
61.
H. L.
Zhuang
and
R. G.
Hennig
,
Appl. Phys. Lett.
101
,
153109
(
2012
).
62.
P.
Kusch
,
S.
Breuer
,
M.
Ramsteiner
,
L.
Geelhaar
,
H.
Riechert
, and
S.
Reich
,
Phys. Rev. B
86
,
075317
(
2012
).
63.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
130
,
074103
(
2009
).
64.
W.
Choyke
,
D.
Hamilton
, and
L.
Patrick
,
Phys. Rev.
133
,
A1163
(
1964
).
65.
V.
Presser
and
K. G.
Nickel
,
Crit. Rev. Solid State Mater. Sci.
33
,
1
(
2008
).
66.
P.
Käckell
,
B.
Wenzien
, and
F.
Bechstedt
,
Phys. Rev. B
50
,
10761
(
1994
).
67.
B.
Wenzien
,
P.
Käckell
,
F.
Bechstedt
, and
G.
Cappellini
,
Phys. Rev. B
52
,
10897
(
1995
).
68.
A.
Yaghoubi
,
R.
Singh
, and
P.
Melinon
,
Cryst. Growth Des.
18
,
7059
(
2018
).
69.
Z.
Zanolli
,
F.
Fuchs
,
J.
Furthmüller
,
U.
von Barth
, and
F.
Bechstedt
,
Phys. Rev. B
75
,
245121
(
2007
).
70.
G.
Giorgi
,
M.
Amato
,
S.
Ossicini
,
X.
Cartoixa
,
E.
Canadell
, and
R.
Rurali
,
J. Phys. Chem. C
124
,
27203
(
2020
).
71.
P.
Krishna
and
A. R.
Verma
,
Phys. Status Solidi B
17
,
437
(
1966
).
72.
L.
Fal’kovskii
and
J.
Camassel
,
JETP Lett.
69
,
268
(
1999
).
73.
W. R.
Lambrecht
,
S.
Limpijumnong
,
S.
Rashkeev
, and
B.
Segall
,
Phys. Status Solidi B
202
,
5
(
1997
).
74.
W.
Van Haeringen
,
P.
Bobbert
, and
W.
Backes
,
Phys. Status Solidi B
202
,
63
(
1997
).
75.
C.
Park
,
B.-H.
Cheong
,
K.-H.
Lee
, and
K.-J.
Chang
,
Phys. Rev. B
49
,
4485
(
1994
).
76.
A.
Bauer
,
P.
Reischauer
,
J.
Kräusslich
,
N.
Schell
,
W.
Matz
, and
K.
Goetz
,
Acta Cryst.
57
,
60
(
2001
).
77.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
78.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
79.
C.
Carbogno
,
K. S.
Thygesen
,
B.
Bieniek
,
C.
Draxl
,
L. M.
Ghiringhelli
,
A.
Gulans
,
O. T.
Hofmann
,
K. W.
Jacobsen
,
S.
Lubeck
,
J. J.
Mortensen
et al,
npj Comput. Mater.
8
,
69
(
2022
).
80.
M.-O.
Lenz
,
T. A.
Purcell
,
D.
Hicks
,
S.
Curtarolo
,
M.
Scheffler
, and
C.
Carbogno
,
npj Comput. Mater.
5
,
123
(
2019
).
81.
M.-O.
Lenz-Himmer
,
Towards Efficient Novel Materials Discovery
(
Humboldt-Universität zu Berlin
,
2022
).
82.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
,
Phys. Rev. Lett.
115
,
036402
(
2015
).
83.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
84.
85.
W.
Setyawan
and
S.
Curtarolo
,
Comput. Mater. Sci.
49
,
299
(
2010
).
86.
K.
Momma
and
F.
Izumi
,
J. Appl. Cryst.
44
,
1272
(
2011
).

Supplementary Material

You do not currently have access to this content.