In hyperpolarization experiments using parahydrogen, a partially negative line (PNL) of o-H2 is occasionally spotted in the nuclear magnetic resonance (NMR) spectra. This is a manifestation of the two-spin order (TSO) of the proton spins, appearing transiently in o-H2 molecules freshly derived from p-H2. For the TSO to be observable, the o-H2 NMR signal must be split into a doublet. In the literature, the splitting is believed to originate from a slow exchange of the dissolved dihydrogen with the dihydride moiety bound to a catalyst present in the reaction mixture. Because this hypothesis may be debatable, in this work a different splitting mechanism is proposed. It employs a residual dipolar coupling (RDC) between the hydrogen protons, originating from a partial orientation of the H2 molecules by the external magnetic field. The orientation effect is due to the anisotropic magnetic polarizability of H2. In a magnetic field of 11.74 T at room temperature, the currently predicted value of the RDC is −0.0024 Hz. Even such small RDC values are sufficient for the PNL effect to be clearly visible in NMR spectra for physically reasonable levels of the TSO in the o-H2 molecules. For RDC values much smaller than the natural linewidth of o-H2, the theoretical frequency distance between the minimum and maximum of PNL proves to be practically independent of the RDC and is of the order of the linewidth. The calculated amplitudes of the PNLs are proportional to the RDC values used in the calculations.

1.
J.
Eills
,
D.
Budker
,
S.
Cavagnero
,
E. Y.
Chekmenev
,
S. J.
Elliott
,
S.
Jannin
,
A.
Lesage
,
J.
Matysik
,
T.
Meersmann
,
T.
Prisner
,
J. A.
Reimer
,
H.
Yang
, and
I. V.
Koptyug
,
Chem. Rev.
123
,
1417
1551
(
2023
).
2.
J.
Natterer
and
J.
Bargon
,
Prog. Nucl. Magn. Reson. Spectrosc.
31
,
293
315
(
1997
).
3.
C. R.
Bowers
and
D. P.
Weitekamp
,
Phys. Rev. Lett.
57
,
2645
2648
(
1986
).
4.
T. C.
Eisenschmid
,
R. U.
Kirss
,
P. P.
Deutsch
,
S. I.
Hommeltoft
,
R.
Eisenberg
,
J.
Bargon
,
R. G.
Lawler
, and
A. L.
Balch
,
J. Am. Chem. Soc.
109
,
8089
8091
(
1987
).
5.
M. G.
Pravica
and
D. P.
Weitekamp
,
Chem. Phys. Lett.
145
,
255
258
(
1988
).
6.
C. R.
Bowers
and
D. P.
Weitekamp
,
J. Am. Chem. Soc.
109
,
5541
5542
(
1987
).
7.
K. D.
Atkinson
,
M. J.
Cowley
,
P. I. P.
Elliott
,
S. B.
Duckett
,
G. G. R.
Green
,
J.
Lopez-Serrano
, and
A. C.
Whitwood
,
J. Am. Chem. Soc.
131
,
13362
13368
(
2009
).
8.
W.
Adams
,
J. A.
Aguilar
,
K. D.
Atkinson
,
M. J.
Cowley
,
P. I. P.
Elliott
,
S. B.
Duckett
,
G. G. R.
Green
,
I. G.
Khazal
,
J.
López-Serrano
, and
D. C.
Williamson
,
Science
323
,
1708
1711
(
2009
).
9.
A.
Johnson
,
C. G.
Royle
,
C. N.
Brodie
,
A. J.
Martínez-Martínez
,
S. B.
Duckett
, and
A. S.
Weller
,
Inorg. Chem.
60
,
13903
13912
(
2021
).
10.
V. V.
Zhivonitko
,
K.
Sorochkina
,
K.
Chernichenko
,
B.
Kotai
,
T.
Földes
,
I.
Pápai
,
V.-V.
Telkki
,
T.
Repo
, and
I.
Koptyug
,
Phys. Chem. Chem. Phys.
18
,
27784
27795
(
2016
).
11.
N. V.
Kireev
,
A. S.
Kiryutin
,
A. A.
Pavlov
,
A. V.
Yurkovskaya
,
E. I.
Musina
,
A. A.
Karasik
,
E. S.
Shubina
,
K. L.
Ivanov
, and
N. V.
Belkova
,
Eur. J. Inorg. Chem.
2021
,
4265
4272
.
12.
M. S.
Alam
,
X.
Li
,
D. O.
Brittin
,
S.
Islam
,
P.
Deria
,
E. Y.
Chekmenev
, and
B. M.
Goodson
,
Angew. Chem., Int. Ed.
62
,
e202213581
(
2023
).
13.
A. S.
Kiryutin
,
G.
Sauer
,
A. V.
Yurkovskaya
,
H.-H.
Limbach
,
K. L.
Ivanov
, and
G.
Buntkowsky
,
J. Phys. Chem. C
121
,
9879
9888
(
2017
).
14.
P. W.
Kuchel
,
B. E.
Chapman
, and
A. J.
Lennon
,
J. Magn. Reson., Ser. A
103
,
329
331
(
1993
).
15.
H.
Gilboa
,
B. E.
Chapman
, and
P. W.
Kuchel
,
J. Magn. Reson., Ser. A
119
,
1
5
(
1996
).
16.
E.
Sartori
,
M.
Ruzzi
,
N. J.
Turro
,
J. D.
Decatur
,
D. C.
Doetschman
,
R. G.
Lawler
,
A. L.
Buchachenko
,
Y.
Murata
, and
K.
Komatsu
,
J. Am. Chem. Soc.
128
,
14752
14753
(
2006
).
17.
C.
Aroulanda
,
L.
Starovoytova
, and
D.
Canet
,
J. Phys. Chem. A
111
,
10615
10624
(
2007
).
18.
N. F.
Ramsey
,
Molecular Beams
(
Clarendon Press
,
Oxford
,
1956
), Chap. 8.
19.
W. H.
Flygare
,
Chem. Rev.
74
,
653
687
(
1974
).
20.
S.
Szymanski
,
J. Magn. Reson.
77
,
320
342
(
1988
).
21.
See https://webbook.nist.gov/cgi/cbook.cgi?ID=C1333740 for the proto-proton distance and rotational constant for molecular hydrogen in equilibrium position.
You do not currently have access to this content.