The use of oriented external electric fields (OEEFs) as a potential tool for catalyzing chemical reactions has gained traction in recent years. Electronic structure calculations using OEEFs are commonly done using methods based on density functional theory (DFT), but until now, the performance of DFT methods for calculating molecules in OEEFs had not been assessed in a more general scope. Looking at the accuracy of molecular geometries, electronic energies, and electric dipole moments compared to accurate coupled-cluster with perturbative triples data, we have investigated a wide variety of density functionals using different basis sets to determine how well the individual functionals perform on various types of chemical bonds. We found that most functionals accurately calculate geometries in OEEFs and that small basis sets are sufficient in many cases. Calculations of electronic energies show a significant error introduced by the OEEF, which the use of a larger basis set helps mitigate. Our findings show that DFT methods can be used for accurate calculations in OEEFs, allowing researchers to make full use of the advantages that they bring.

1.
S.
Shaik
,
R.
Ramanan
,
D.
Danovich
, and
D.
Mandal
, “
Structure and reactivity/selectivity control by oriented-external electric fields
,”
Chem. Soc. Rev.
47
,
5125
5145
(
2018
).
2.
S.
Shaik
,
D.
Danovich
,
J.
Joy
,
Z.
Wang
, and
T.
Stuyver
, “
Electric-field mediated chemistry: Uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control
,”
J. Am. Chem. Soc.
142
,
12551
12562
(
2020
).
3.
A. C.
Aragonès
,
N. L.
Haworth
,
N.
Darwish
,
S.
Ciampi
,
N. J.
Bloomfield
,
G. G.
Wallace
,
I.
Diez-Perez
, and
M. L.
Coote
, “
Electrostatic catalysis of a Diels–Alder reaction
,”
Nature
531
,
88
91
(
2016
).
4.
L.
Rincón
,
J. R.
Mora
,
F. J.
Torres
, and
R.
Almeida
, “
On the activation of σ-bonds by electric fields: A Valence Bond perspective
,”
Chem. Phys.
477
,
1
7
(
2016
).
5.
S.
Yu
,
P.
Vermeeren
,
T. A.
Hamlin
, and
F. M.
Bickelhaupt
, “
How oriented external electric fields modulate reactivity
,”
Chem. - Eur. J.
27
,
5683
5693
(
2021
).
6.
L.
Zhang
,
E.
Laborda
,
N.
Darwish
,
B. B.
Noble
,
J. H.
Tyrell
,
S.
Pluczyk
,
A. P.
Le Brun
,
G. G.
Wallace
,
J.
Gonzalez
,
M. L.
Coote
, and
S.
Ciampi
, “
Electrochemical and electrostatic cleavage of alkoxyamines
,”
J. Am. Chem. Soc.
140
,
766
774
(
2018
).
7.
I.
Rozas
,
I.
Alkorta
, and
J.
Elguero
, “
Field effects on dihydrogen bonded systems
,”
Chem. Phys. Lett.
275
,
423
428
(
1997
).
8.
R.
Meir
,
H.
Chen
,
W.
Lai
, and
S.
Shaik
, “
Oriented electric fields accelerate Diels–Alder reactions and control the endo/exo selectivity
,”
Chem. Phys. Chem.
11
,
301
310
(
2010
).
9.
Y.
Zang
,
Q.
Zou
,
T.
Fu
,
F.
Ng
,
B.
Fowler
,
J.
Yang
,
H.
Li
,
M. L.
Steigerwald
,
C.
Nuckolls
, and
L.
Venkataraman
, “
Directing isomerization reactions of cumulenes with electric fields
,”
Nat. Commun.
10
,
4482
(
2019
).
10.
C.
Wang
,
D.
Danovich
,
H.
Chen
, and
S.
Shaik
, “
Oriented external electric fields: Tweezers and catalysts for reactivity in halogen-bond complexes
,”
J. Am. Chem. Soc.
141
,
7122
7136
(
2019
).
11.
T.
Stuyver
,
D.
Danovich
,
F.
De Proft
, and
S.
Shaik
, “
Electrophilic aromatic substitution reactions: Mechanistic landscape, electrostatic and electric-field control of reaction rates, and mechanistic crossovers
,”
J. Am. Chem. Soc.
141
,
9719
9730
(
2019
).
12.
T.
Stuyver
,
R.
Ramanan
,
D.
Mallick
, and
S.
Shaik
, “
Oriented (local) electric fields drive the millionfold enhancement of the H-abstraction catalysis observed for synthetic metalloenzyme analogues
,”
Angew. Chem., Int. Ed.
59
,
7915
7920
(
2020
).
13.
S.
Sowlati-Hashjin
and
C. F.
Matta
, “
The chemical bond in external electric fields: Energies, geometries, and vibrational stark shifts of diatomic molecules
,”
J. Chem. Phys.
139
,
144101
(
2013
).
14.
T.
Clarys
,
T.
Stuyver
,
F.
De Proft
, and
P.
Geerlings
, “
Extending conceptual DFT to include additional variables: Oriented external electric field
,”
Phys. Chem. Chem. Phys.
23
,
990
(
2021
).
15.
T.
Scheele
and
T.
Neudecker
, “
Using oriented external electric fields to manipulate rupture forces of mechanophores
,”
chemRxiv:10.26434
(
2023
).
16.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
17.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
18.
M.
Bursch
,
J.-M.
Mewes
,
A.
Hansen
, and
S.
Grimme
, “
Best‐practice DFT protocols for basic molecular computational chemistry
,”
Angew. Chem., Int. Ed.
61
,
e202205735
(
2022
).
19.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Insights into current limitations of density functional theory
,”
Science
321
,
792
794
(
2008
).
20.
Y.
Zhang
and
W.
Yang
, “
A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons
,”
J. Chem. Phys.
109
,
2604
2608
(
1998
).
21.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Many-electron self-interaction error in approximate density functionals
,”
J. Chem. Phys.
125
,
201102
(
2006
).
22.
P.
Mori-Sánchez
,
Q.
Wu
, and
W.
Yang
, “
Accurate polymer polarizabilities with exact exchange density-functional theory
,”
J. Chem. Phys.
119
,
11001
11004
(
2003
).
23.
S. J. A.
Van Gisbergen
,
P. R. T.
Schipper
,
O. V.
Gritsenko
,
E. J.
Baerends
,
J. G.
Snijders
,
B.
Champagne
, and
B.
Kirtman
, “
Electric field dependence of the exchange-correlation potential in molecular chains
,”
Phys. Rev. Lett.
83
,
694
697
(
1999
).
24.
B.
Schirmer
and
S.
Grimme
, “
Electric field induced activation of H2—Can DFT do the job?
,”
Chem. Commun.
46
,
7942
7944
(
2010
).
25.
D.
Hait
and
M.
Head-Gordon
, “
How accurate is density functional theory at predicting dipole moments? An assessment using a new database of 200 benchmark values
,”
J. Chem. Theory Comput.
14
,
1969
1981
(
2018
).
26.
D.
Hait
and
M.
Head-Gordon
, “
How accurate are static polarizability predictions from density functional theory? An assessment over 132 species at equilibrium geometry
,”
Phys. Chem. Chem. Phys.
20
,
19800
19810
(
2018
).
27.
S. P.
Sitkiewicz
,
R.
Zaleśny
,
E.
Ramos-Cordoba
,
J. M.
Luis
, and
E.
Matito
, “
How reliable are modern density functional approximations to simulate vibrational spectroscopies?
,”
J. Phys. Chem. Lett.
13
,
5963
5968
(
2022
).
28.
E.
Epifanovsky
et al, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem five package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
29.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
, “
Accurate and numerically efficient r2SCAN meta-generalized gradient approximation
,”
J. Phys. Chem. Lett.
11
,
8208
8215
(
2020
).
30.
T.
Lu
and
Q.
Chen
, “
Ultrastrong regulation effect of the electric field on the all‐carboatomic ring cyclo[18]carbon
,”
Chem. Phys. Chem.
22
,
386
395
(
2021
).
31.
M.
Zhang
,
H.
Hou
, and
B.
Wang
, “
Mechanistic and kinetic investigations on decomposition of trifluoromethanesulfonyl fluoride in the presence of water vapor and electric field
,”
J. Phys. Chem. A
127
,
671
684
(
2023
).
32.
T.
Yaping
,
S.
Mingzhu
,
X.
Renyong
,
A.
Jinfan
, and
Z.
Weiying
, “
Influence of external electric field on structure, spectra and various properties of 3-chlorothieno[2,3-b]pyridine-2-carbonitrile using density functional theory
,”
J. Phys. Org. Chem.
36
,
e4554
(
2023
).
33.
D.
Hong
,
W.
Zeng
,
Z.-T.
Liu
,
F.-S.
Liu
, and
Q.-J.
Liu
, “
Initial decomposition of DATB induced by an external electric field
,”
J. Phys. Chem. A
127
,
5140
5151
(
2023
).
34.
S.
Grimme
, “
Semiempirical hybrid density functional with perturbative second-order correlation
,”
J. Chem. Phys.
124
,
034108
(
2006
).
35.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
36.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
37.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
38.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
39.
A. D.
Becke
, “
Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals
,”
J. Chem. Phys.
107
,
8554
8560
(
1997
).
40.
A. D. A.
Becke
, “
A new mixing of Hartree–Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
41.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
42.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
43.
S.
Kozuch
and
J. M. L.
Martin
, “
Spin-component-scaled double hybrids: An extensive search for the best fifth-rung functionals blending DFT and perturbation theory
,”
J. Comput. Chem.
34
,
2327
2344
(
2013
).
44.
Y.
Zhao
and
D. G.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
241
(
2008
).
45.
Y.
Zhao
and
D. G.
Truhlar
, “
A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
,”
J. Chem. Phys.
125
,
194101
(
2006
).
46.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
47.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
48.
M.
Ernzerhof
and
G. E.
Scuseria
, “
Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional
,”
J. Chem. Phys.
110
,
5029
5036
(
1999
).
49.
L.
Goerigk
and
S.
Grimme
, “
Efficient and accurate double-hybrid-meta-GGA density functionals—Evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions
,”
J. Chem. Theory Comput.
7
,
291
309
(
2011
).
50.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
51.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
52.
N.
Mardirossian
and
M.
Head-Gordon
, “
Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V
,”
J. Chem. Phys.
142
,
074111
(
2015
).
53.
N.
Mardirossian
and
M.
Head-Gordon
, “
ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation
,”
J. Chem. Phys.
144
,
214110
(
2016
).
54.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected double-hybrid density functionals
,”
J. Chem. Phys.
131
,
174105
(
2009
).
55.
Y.-S.
Lin
,
G.-D.
Li
,
S.-P.
Mao
, and
J.-D.
Chai
, “
Long-range corrected hybrid density functionals with improved dispersion corrections
,”
J. Chem. Theory Comput.
9
,
263
272
(
2013
).
56.
N.
Mardirossian
and
M.
Head-Gordon
, “
ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy
,”
Phys. Chem. Chem. Phys.
16
,
9904
9924
(
2014
).
57.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
58.
R. A.
Kendall
,
T. H.
Dunning
, and
R.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
59.
F.
Jensen
, “
Unifying general and segmented contracted basis sets. Segmented polarization consistent basis sets
,”
J. Chem. Theory Comput.
10
,
1074
1085
(
2014
).
60.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
61.
F.
Neese
and
E. F.
Valeev
, “
Revisiting the atomic natural orbital approach for basis sets: Robust systematic basis sets for explicitly correlated and conventional correlated ab initio methods?
,”
J. Chem. Theory Comput.
7
,
33
43
(
2011
).
62.
A.
Najibi
and
L.
Goerigk
, “
The nonlocal kernel in van der Waals density functionals as an additive correction: An extensive analysis with special emphasis on the B97M-V and ωB97M-V approaches
,”
J. Chem. Theory Comput.
14
,
5725
5738
(
2018
).

Supplementary Material

You do not currently have access to this content.