Nanoparticles (NPs) can be highly beneficial as additives to lubricating fluids, and the tribotronic response of charged NPs tuned by external fields represents an area of great technological potential. Tribotronic response, however, is expected to be highly size dependent, which represents a significant design challenge. To explore this issue, quartz crystal microbalance and cyclic voltammetry were employed to characterize nanotribological and electrochemical behavior of platinum–nanofluid interfaces formed by aqueous suspensions of different-sized negatively charged titanium dioxide (TiO2) NPs. Suspensions of 5, 40, and 100 nm NPs were all observed to reduced interfacial frictional drag forces upon introduction into pure water in zero field conditions, with reductions for the 40 nm NPs about twice those of 5 nm particles at comparable concentrations. Suspensions of 100 nm NPs produced even greater reductions, but rapidly precipitated from the suspension when left unstirred. NPs were also driven to and from Pt electrode surfaces by applying external electric fields with varying amplitudes and modulation frequencies. For electric fields of sufficient amplitude and duration, the 40 nm TiO2 nanosuspension exhibited tribological properties consistent with a reversible electrophoretic deposition of the NPs, accompanied by changes in the electrochemical attributes and increasing interfacial drag. The 5 nm NP properties were consistent with progressive reductions in interfacial drag forces at the NP–suspension interface linked to field-induced increases in concentration.

1.
W. J.
Stark
,
P. R.
Stoessel
,
W.
Wohlleben
, and
A.
Hafner
,
Chem. Soc. Rev.
44
(
16
),
5793
5805
(
2015
).
2.
D.
Guo
,
G.
Xie
, and
J.
Luo
,
J. Phys. D: Appl. Phys.
47
(
1
),
013001
(
2014
).
3.
C. M.
Seed
,
B.
Acharya
, and
J.
Krim
,
Tribol. Lett.
69
(
3
),
83
(
2021
).
4.
C. M.
Seed
,
B.
Acharya
,
V.
Perelygin
,
A. I.
Smirnov
, and
J.
Krim
,
Appl. Surf. Sci.
566
,
150675
(
2021
).
5.
B.
Acharya
,
C. M.
Seed
,
D. W.
Brenner
,
A. I.
Smirnov
, and
J.
Krim
,
Sci. Rep.
9
(
1
),
18584
(
2019
).
6.
S. B.
Mousavi
,
S. Z.
Heris
, and
P.
Estellé
,
Sci. Rep.
10
(
1
),
5813
(
2020
).
7.
S. N. A.
Yusof
,
N. A. C.
Sidik
,
Y.
Asako
,
W. M. A. A.
Japar
,
S. B.
Mohamed
, and
N. M. a.
Muhammad
,
Nanotechnol. Rev.
9
(
1
),
1326
1349
(
2020
).
9.
Z.
Qi
and
G. M.
Koenig
, Jr.
,
J. Vac. Sci. Technol. B
35
(
4
),
040801
(
2017
).
10.
B.
Akuzum
,
L.
Agartan
,
J.
Locco
, and
E. C.
Kumbur
,
J. Appl. Electrochem.
47
(
3
),
369
380
(
2017
).
11.
M.
Chieruzzi
,
G. F.
Cerritelli
,
A.
Miliozzi
, and
J. M.
Kenny
,
Nanoscale Res. Lett.
8
(
1
),
448
(
2013
).
12.
S. C.
Thomas
,
B. S. P.
Harshita
,
P.
Mishra
, and
S.
Talegaonkar
,
Curr. Pharm. Des.
21
(
42
),
6165
6188
(
2015
).
13.
L.
Treccani
,
T.
Yvonne Klein
,
F.
Meder
,
K.
Pardun
, and
K.
Rezwan
,
Acta Biomater.
9
(
7
),
7115
7150
(
2013
).
14.
S.
Motahar
,
A. A.
Alemrajabi
, and
R.
Khodabandeh
,
Energy Convers. Manage.
138
,
162
170
(
2017
).
15.
A.-I.
Moreno-Vega
,
T.
Gómez-Quintero
,
R.-E.
Nuñez-Anita
,
L.-S.
Acosta-Torres
, and
V.
Castaño
,
J. Nanotechnol.
2012
,
936041
.
16.
A.
Mikolajczyk
,
A.
Gajewicz
,
B.
Rasulev
,
N.
Schaeublin
,
E.
Maurer-Gardner
,
S.
Hussain
,
J.
Leszczynski
, and
T.
Puzyn
,
Chem. Mater.
27
(
7
),
2400
2407
(
2015
).
17.
V.
Perelygin
,
M. A.
Voinov
,
A.
Marek
,
E.
Ou
,
J.
Krim
,
D.
Brenner
,
T. I.
Smirnova
, and
A. I.
Smirnov
,
J. Phys. Chem. C
123
,
29972
(
2019
).
18.
S.
Bhattacharjee
,
J. Controlled Release
235
,
337
351
(
2016
).
19.
J.
Zhou
,
R.
Schmitz
,
B.
Dünweg
, and
F.
Schmid
,
J. Chem. Phys.
139
(
2
),
024901
(
2013
).
20.
C.
Shih
and
R.
Yamamoto
,
Phys. Rev. E
89
(
6
),
062317
(
2014
).
21.
F.
Piccinno
,
F.
Gottschalk
,
S.
Seeger
, and
B.
Nowack
,
J. Nanopart. Res.
14
(
9
),
1109
(
2012
).
22.
J.
Wang
,
Z.
Wang
,
W.
Wang
,
Y.
Wang
,
X.
Hu
,
J.
Liu
,
X.
Gong
,
W.
Miao
,
L.
Ding
,
X.
Li
, and
J.
Tang
,
Nanoscale
14
(
18
),
6709
6734
(
2022
).
23.
D.
Ziental
,
B.
Czarczynska-Goslinska
,
D. T.
Mlynarczyk
,
A.
Glowacka-Sobotta
,
B.
Stanisz
,
T.
Goslinski
, and
L.
Sobotta
,
Nanomaterials
10
(
2
),
387
(
2020
).
24.
X.
Chen
,
Chin. J. Catal.
30
(
8
),
839
851
(
2009
).
25.
S.
Dor
,
S.
Rühle
,
A.
Ofir
,
M.
Adler
,
L.
Grinis
, and
A.
Zaban
,
Colloids Surf., A
342
(
1–3
),
70
75
(
2009
).
26.
D.
Deng
,
M. G.
Kim
,
J. Y.
Lee
, and
J.
Cho
,
Energy Environ. Sci.
2
(
8
),
818
837
(
2009
).
27.
T.
Song
and
U.
Paik
,
J. Mater. Chem. A
4
(
1
),
14
31
(
2016
).
28.
H.
Su
,
S.
Jaffer
, and
H.
Yu
,
Energy Storage Mater.
5
,
116
131
(
2016
).
29.
Y.
Liu
,
X.
Yan
,
B.
Xu
,
J.
Lan
,
Y.
Liu
,
X.
Yang
,
Y.
Lin
, and
C.
Nan
,
J. Mater. Chem. A
6
(
47
),
24298
24310
(
2018
).
30.
J.
Wang
,
J.
Polleux
,
J.
Lim
, and
B.
Dunn
,
J. Phys. Chem. C
111
(
40
),
14925
14931
(
2007
).
31.
M.
Madian
,
A.
Eychmüller
, and
L.
Giebeler
,
Batteries
4
(
1
),
7
(
2018
).
32.
B.
Acharya
,
T. N.
Pardue
,
L. L.
Su
,
A. I.
Smirnov
,
D. W.
Brenner
, and
J.
Krim
,
Lubricants
7
(
6
),
49
(
2019
).
33.
M. N. F.
Ismail
,
T. J.
Harvey
,
J. A.
Wharton
,
R. J. K.
Wood
, and
A.
Humphreys
,
Wear
267
(
11
),
1978
1986
(
2009
).
34.
35.
M.
Košević
,
G.
Sekularac
,
L.
Živković
,
V.
Panić
, and
B.
Nikolić
,
Croat. Chem. Acta
90
,
251
258
(
2017
).
36.
T. N.
Pardue
,
B.
Acharya
,
C. K.
Curtis
, and
J.
Krim
,
Tribol. Lett.
66
(
4
),
130
(
2018
).
37.
Z.
Yi
,
X.
Wang
,
W.
Li
,
X.
Qin
et al, “
Interfacial friction at action: Interactions, regulation, and applications
,”
Friction
11
,
2153
(
2023
).
38.
D.
Johannsmann
, “
The quartz crystal microbalance in soft matter research
,” in
Soft and Biological Matter
(
Springer
,
2015
), pp.
191
204
.
39.
W. T.
Tysoe
and
N. D.
Spencer
, “
Rapid testing of tribotronic materials
,”
Tribol. Lubr. Technol.
10
,
76
77
(
2021
).
40.
K.
Huang
and
I.
Szlufarska
,
Langmuir
28
(
50
),
17302
17312
(
2012
).
41.
M.
Urbakh
,
V.
Tsionsky
,
E.
Gileadi
,
L.
Daikhin
,
A.
Janshoff
, and
C.
Steinem
,
Piezoelectric Sensors
(
Springer
,
Berlin, Heidelberg
,
2007
), pp.
111
149
.
42.
D.
Johannsmann
,
A.
Langhoff
, and
C.
Leppin
,
Sensors
21
(
10
),
3490
(
2021
).
43.
E. W. J.
Mardles
, “
Viscosity of suspensions and the Einstein equation
,”
Nature
145
,
970
(
1940
).
44.
M. P. S.
Mousavi
,
S. A.
Saba
,
E. L.
Anderson
,
M. A.
Hillmyer
, and
P.
Bühlmann
,
Anal. Chem.
88
,
8706
8713
(
2016
).
45.
Stanford Resarch Systems (SRS)
,
QCM 100 Quartz Crystal Microbalance Analog Controller—QCM 25 Crystal Oscillator
,
Stanford Research Systems, Inc.
,
California
,
2002
.
46.
S. J.
Martin
,
V. E.
Granstaff
, and
G. C.
Frye
,
Anal. Chem.
63
,
2272
2281
(
1991
).
47.
C. D.
Stockbridge
,
Vac. Microbalance Tech.
5
,
147
178
(
1966
).
48.
L.
Daikhin
,
E.
Gileadi
,
V.
Tsionsky
,
M.
Urbakh
, and
G.
Zilberman
,
Electrochim. Acta
45
(
22–23
),
3615
3621
(
2000
).
49.
C.
Seidl
,
J. L.
Hörmann
, and
L.
Pastewka
, “
Molecular simulations of electrotunable lubrication: Viscosity and wall slip in aqueous electrolytes
,”
Tribol. Lett.
69
(
1
),
22
(
2021
).
50.
K.
Keiji Kanazawa
and
J. G.
Gordon
,
Anal. Chim. Acta
175
,
99
105
(
1985
).
51.
L.
Bruschi
and
G.
Mistura
, “
Measurement of the friction of thin films by means of a quartz microbalance in the presence of a finite vapor pressure
,”
Phys. Rev. B
63
,
235411
(
2001
).
52.
X.
Qiao
,
X.
Zhang
,
Y.
Tian
, and
Y.
Meng
, “
Modeling the response of a quartz crystal microbalance under nanoscale confinement and slip boundary conditions
,”
Phys. Chem. Chem. Phys.
17
,
7224
7231
(
2015
).
53.
X.
Liu
,
N.
Xu
,
W.
Li
,
M.
Zhang
,
L.
Chen
,
W.
Lou
, and
X.
Wang
,
Tribol. Int.
109
,
467
472
(
2017
).
54.
R. P.
Chiarello
,
J.
Krim
, and
C.
Thompson
,
Surf. Sci.
306
,
359
366
(
1994
).
You do not currently have access to this content.