Micro–nano symbiotic superamphiphobic surfaces can prevent liquids from adhering to metal surfaces and, as a result, improve their corrosion resistance, self-cleaning performance, pollution resistance, and ice resistance. However, the fabrication of stable and controllable micro–nano symbiotic superamphiphobic structures on metal surfaces commonly used in industry remains a significant challenge. In this study, a laser-electrochemical hybrid subtractive–additive manufacturing method was proposed and developed for preparing copper superamphiphobic surfaces. Both experimental and fluid simulation studies were carried out. Utilizing this novel hybrid method, the controllable preparation of superamphiphobic micro–nano symbiotic structures was realized. The experimental results showed that the prepared surfaces had excellent superamphiphobic properties following subsequent modification with low surface energy substances. The contact angles of water droplets and oil droplets on the surface following electrodeposition treatment reached values of 161 ± 4° and 151 ± 4°, respectively, which showed that the prepared surface possessed perfect superamphiphobicity. Both the fabrication method and the test results provided useful insights for the preparation of stable and controllable superamphiphobic structures on metal surfaces in the future.

1.
Y.
Su
,
S.
Wang
,
D.
Yao
,
Y.
Fu
,
H.
Zang
,
H.
Xu
, and
P.
Polynkin
, “
Stand-off fabrication of irregularly shaped, multi-functional hydrophobic and antireflective metal surfaces using femtosecond laser filaments in air
,”
Appl. Surf. Sci.
494
,
1007
(
2019
).
2.
S.
Nundy
,
A.
Ghosh
,
A.
Tahir
, and
T. K.
Mallick
, “
Role of hafnium doping on wetting transition tuning the wettability properties of ZnO and doped thin films: Self-cleaning coating for solar application
,”
ACS Appl. Mater. Interfaces
13
,
25540
(
2021
).
3.
C.
Jiang
,
W.
Liu
,
M.
Yang
,
C.
Liu
,
S.
He
,
Y.
Xie
, and
Z.
Wang
, “
Robust multifunctional superhydrophobic fabric with UV induced reversible wettability, photocatalytic self-cleaning property, and oil-water separation via thiol-ene click chemistry
,”
Appl. Surf. Sci.
463
,
34
(
2019
).
4.
C.
Yao
,
Y.
Zhou
,
J.
Wang
, and
L.
Jiang
, “
Bioinspired universal approaches for cavity regulation during cylinder impact processes for drag reduction in aqueous media: Macrogeometry vanquishing wettability
,”
ACS Appl. Mater. Interfaces
13
,
38808
(
2021
).
5.
J.
Li
,
O.
Lin
,
C.
Cheng
,
W.
Wang
,
C.
Xu
, and
L.
Ren
, “
Fabrication of a Ni/SiC composite coating on steel surface with excellent corrosion inhibition performance
,”
J. Mater. Process. Technol.
290
,
116987
(
2021
).
6.
R.
Jiang
,
L.
Hao
,
L.
Song
,
L.
Tian
,
Y.
Fan
,
J.
Zhao
,
C.
Liu
,
W.
Ming
, and
L.
Ren
, “
Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances
,”
Chem. Eng. J.
398
,
125609
(
2020
).
7.
H.
Bai
,
L.
Zhang
, and
D.
Gu
, “
Micrometer-sized spherulites as building blocks for lotus leaf-like superhydrophobic coatings
,”
Appl. Surf. Sci.
459
,
54
(
2018
).
8.
W.
Kim
,
D.
Kim
,
S.
Park
,
D.
Lee
,
H.
Hyun
, and
J.
Kim
, “
Engineering lotus leaf-inspired micro- and nanostructures for the manipulation of functional engineering platforms
,”
J. Ind. Eng. Chem.
61
,
39
(
2018
).
9.
Y.
Li
,
W.
Sun
,
A.
Zhang
,
S.
Jin
,
X.
Liang
,
Z.
Tang
,
X.
Liu
, and
H.
Chen
, “
Vascular cell behavior on heparin-like polymers modified silicone surfaces: The prominent role of the lotus leaf-like topography
,”
J. Colloid Interface Sci.
603
,
501
(
2021
).
10.
L.
Pashazanusi
,
B.
Lwoya
,
S.
Oak
,
T.
Khosla
,
J. N.
Albert
,
Y.
Tian
,
G.
Bansal
,
N.
Kumar
, and
N. S.
Pesika
, “
Enhanced adhesion of mosquitoes to rough surfaces
,”
ACS Appl. Mater. Interfaces
9
,
24373
(
2017
).
11.
Z.
Lian
,
J.
Xu
,
Z.
Yu
,
P.
Yu
, and
H.
Yu
, “
A simple two-step approach for the fabrication of bio-inspired superhydrophobic and anisotropic wetting surfaces having corrosion resistance
,”
J. Alloys Compd.
793
,
326
(
2019
).
12.
R.
Malinowski
,
I. P.
Parkin
, and
G.
Volpe
, “
Advances towards programmable droplet transport on solid surfaces and its applications
,”
Chem. Soc. Rev.
49
,
7879
(
2020
).
13.
Q.
Sun
,
D.
Wang
,
Y.
Li
,
J.
Zhang
,
S.
Ye
,
J.
Cui
,
L.
Chen
,
Z.
Wang
,
H.-J.
Butt
, and
D.
Vollmer
, “
Surface charge printing for programmed droplet transport
,”
Nat. Mater.
18
,
936
(
2019
).
14.
S.
Lin
,
B.
Li
,
Y.
Xu
,
A. A.
Mehrizi
, and
L.
Chen
, “
Effective strategies for droplet transport on solid surfaces
,”
Adv. Mater. Interfaces
8
,
2001441
(
2021
).
15.
P.
Lv
,
Y. L.
Zhang
,
D. D.
Han
, and
H. B.
Sun
, “
Directional droplet transport on functional surfaces with superwettabilities
,”
Adv. Mater. Interfaces
8
,
2100043
(
2021
).
16.
S. M.
Kang
,
C.
Lee
,
H. N.
Kim
,
B. J.
Lee
,
J. E.
Lee
,
M. K.
Kwak
, and
K. Y.
Suh
, “
Directional oil sliding surfaces with hierarchical anisotropic groove microstructures
,”
Adv. Mater.
25
,
5756
(
2013
).
17.
W.
Pan
,
Q.
Wang
,
J.
Ma
,
W.
Xu
,
J.
Sun
,
X.
Liu
, and
J.
Song
, “
Solid-like slippery coating with highly comprehensive performance
,”
Adv. Funct. Mater.
33
,
2302311
(
2023
).
18.
D.
Yan
,
Y.
Chen
,
J.
Liu
, and
J.
Song
, “
Super-fast fog collector based on self-driven jet of mini fog droplets
,”
Small
19
(36),
1
(
2023
).
19.
Z.
Chu
and
S.
Seeger
, “
Superamphiphobic surfaces
,”
Chem. Soc. Rev.
43
,
2784
(
2014
).
20.
T.
Wang
,
C.
Lv
,
L.
Ji
,
X.
He
, and
S.
Wang
, “
Designing re-entrant geometry: Construction of a superamphiphobic surface with large-sized particles
,”
ACS Appl. Mater. Interfaces
12
,
49155
(
2020
).
21.
J.
Ai
and
Z.
Guo
, “
Biomimetic polymeric superamphiphobic surfaces: Their fabrication and applications
,”
Chem. Commun.
55
,
10820
(
2019
).
22.
W. S.
Wong
,
T. P.
Corrales
,
A.
Naga
,
P.
Baumli
,
A.
Kaltbeitzel
,
M.
Kappl
,
P.
Papadopoulos
,
D.
Vollmer
, and
H.-J. R.
Butt
, “
Microdroplet contaminants: When and why superamphiphobic surfaces are not self-cleaning
,”
ACS Nano
14
,
3836
(
2020
).
23.
H.
Wang
,
G.
Chi
,
Y.
Jia
,
F.
Yu
,
Z.
Wang
, and
Y.
Wang
, “
A novel combination of electrical discharge machining and electrodeposition for superamphiphobic metallic surface fabrication
,”
Appl. Surf. Sci.
504
,
144285
(
2020
).
24.
J.
Zhu
and
K.
Liao
, “
Efficient and facile method of preparing superamphiphobic surfaces on Cu substrates
,”
ACS Appl. Mater. Interfaces
13
,
37830
(
2021
).
25.
T.
Chen
,
J.
Guo
,
Y.
Zhang
,
N.
Hu
, and
J.
Zhang
, “
Superamphiphobic triple-scale micro-/nanostructured aluminum surfaces with self-cleaning and anti-icing properties
,”
J. Mater. Sci.
56
,
15463
(
2021
).
26.
J.
Shen
,
P.
Ming
,
X.
Zhang
,
L.
Yan
,
X.
Zheng
, and
W.
Wang
, “
Broad spectrum anti-fouling, photocatalytic antibacterial and superamphiphobic coating fabricated by composite electrodeposition process
,”
J. Electrochem. Soc.
166
,
E564
(
2019
).
27.
A.
Tuteja
,
W.
Choi
,
M.
Ma
,
J. M.
Mabry
,
S. A.
Mazzella
,
G. C.
Rutledge
,
G. H.
McKinley
, and
R. E.
Cohen
, “
Designing superoleophobic surfaces
,”
Science
318
,
1618
(
2007
).
28.
X.
Zhu
,
Z.
Zhang
,
X.
Xu
,
X.
Men
,
J.
Yang
,
X.
Zhou
, and
Q.
Xue
, “
Facile fabrication of a superamphiphobic surface on the copper substrate
,”
J. Colloid Interface Sci.
367
,
443
(
2012
).
29.
X.
Li
,
D.
Wang
,
Y.
Tan
,
J.
Yang
, and
X.
Deng
, “
Designing transparent micro/nano re-entrant-coordinated superamphiphobic surfaces with ultralow solid/liquid adhesion
,”
ACS Appl. Mater. Interfaces
11
,
29458
(
2019
).
30.
X.
Gou
and
Z.
Guo
, “
Surface topographies of biomimetic superamphiphobic materials: Design criteria, fabrication and performance
,”
Adv. Colloid Interface Sci.
269
,
87
(
2019
).
31.
J.
Han
,
M.
Cai
,
Y.
Lin
,
W.
Liu
,
X.
Luo
,
H.
Zhang
, and
M.
Zhong
, “
3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method
,”
Appl. Surf. Sci.
456
,
726
(
2018
).
32.
L.
Chen
,
Z.
Guo
, and
W.
Liu
, “
Outmatching superhydrophobicity: Bio-inspired re-entrant curvature for mighty superamphiphobicity in air
,”
J. Mater. Chem. A
5
,
14480
(
2017
).
33.
P. K.
Sow
,
R.
Singhal
,
P.
Sahoo
, and
S.
Radhakanth
, “
Fabricating low-cost, robust superhydrophobic coatings with re-entrant topology for self-cleaning, corrosion inhibition, and oil–water separation
,”
J. Colloid Interface Sci.
600
,
358
(
2021
).
34.
R.
Roy
,
J. A.
Weibel
, and
S. V.
Garimella
, “
Re-entrant cavities enhance resilience to the Cassie-to-Wenzel state transition on superhydrophobic surfaces during electrowetting
,”
Langmuir
34
,
12787
(
2018
).
35.
K.
Astankova
,
E.
Gorokhov
,
I.
Azarov
,
V.
Volodin
, and
A.
Latyshev
, “
Local anodic oxidation of solid GeO films: The nanopatterning possibilities
,”
Surf. Interfaces
6
,
56
(
2017
).
36.
M.
Tu
,
B.
Xia
,
D. E.
Kravchenko
,
M. L.
Tietze
,
A. J.
Cruz
,
I.
Stassen
,
T.
Hauffman
,
J.
Teyssandier
,
S.
De Feyter
, and
Z.
Wang
, “
Direct x-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks
,”
Nat. Mater.
20
,
93
(
2021
).
37.
M. S.
Saifullah
,
M.
Asbahi
,
D. C.
Neo
,
Z.
Mahfoud
,
H. R.
Tan
,
S. T.
Ha
,
N.
Dwivedi
,
T.
Dutta
,
S.
bin Dolmanan
, and
Z.
Aabdin
, “
Patterning at the resolution limit of commercial electron beam lithography
,”
Nano Lett.
22
,
7432
(
2022
).
38.
J.
Shao
,
X.
Chen
,
X.
Li
,
H.
Tian
,
C.
Wang
, and
B.
Lu
, “
Nanoimprint lithography for the manufacturing of flexible electronics
,”
Sci. China Technol. Sci.
62
,
175
(
2019
).
39.
L. M.
Cox
,
A. M.
Martinez
,
A. K.
Blevins
,
N.
Sowan
,
Y.
Ding
, and
C. N.
Bowman
, “
Nanoimprint lithography: Emergent materials and methods of actuation
,”
Nano Today
31
,
100838
(
2020
).
40.
R.
Liu
,
Z.
Chi
,
L.
Cao
,
Z.
Weng
,
L.
Wang
,
L.
Li
,
S.
Saeed
,
Z.
Lian
, and
Z.
Wang
, “
Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment
,”
Appl. Surf. Sci.
534
,
147576
(
2020
).
41.
K.
Ellinas
,
A.
Tserepi
, and
E.
Gogolides
, “
From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing
,”
Langmuir
27
,
3960
(
2011
).
42.
Z.
Cao
,
X.
Wang
,
Y.
Pang
,
S.
Cheng
, and
J.
Liu
, “
Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment
,”
Nat. Commun.
10
,
5783
(
2019
).
43.
Y.
Feng
and
J.
Yao
, “
Tailoring the structure and function of metal organic framework by chemical etching for diverse applications
,”
Coord. Chem. Rev.
470
,
214699
(
2022
).
44.
G.
Barati Darband
,
M.
Aliofkhazraei
,
S.
Hyun
, and
S.
Shanmugam
, “
Pulse electrodeposition of a superhydrophilic and binder-free Ni–Fe–P nanostructure as highly active and durable electrocatalyst for both hydrogen and oxygen evolution reactions
,”
ACS Appl. Mater. Interfaces
12
,
53719
(
2020
).
45.
A. O.
Ijaola
,
E. A.
Bamidele
,
C. J.
Akisin
,
I. T.
Bello
,
A. T.
Oyatobo
,
A.
Abdulkareem
,
P. K.
Farayibi
, and
E.
Asmatulu
, “
Wettability transition for laser textured surfaces: A comprehensive review
,”
Surf. Interfaces
21
,
100802
(
2020
).
46.
A.
Volpe
,
C.
Gaudiuso
,
L.
Di Venere
,
F.
Licciulli
,
F.
Giordano
, and
A.
Ancona
, “
Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties
,”
Coatings
10
,
587
(
2020
).
47.
L. B.
Boinovich
,
E. B.
Modin
,
A. R.
Sayfutdinova
,
K. A.
Emelyanenko
,
A. L.
Vasiliev
, and
A. M.
Emelyanenko
, “
Combination of functional nanoengineering and nanosecond laser texturing for design of superhydrophobic aluminum alloy with exceptional mechanical and chemical properties
,”
ACS Nano
11
,
10113
(
2017
).
48.
W.
Tong
and
D.
Xiong
, “
Direct laser texturing technique for metal surfaces to achieve superhydrophobicity
,”
Mater. Today Phys.
23
,
100651
(
2022
).
49.
J.
Zheng
,
J.
Yang
,
W.
Cao
,
Y.
Huang
,
Z.
Zhou
, and
Y.-X.
Huang
, “
Fabrication of transparent wear-resistant superhydrophobic SiO2 film via phase separation and chemical vapor deposition methods
,”
Ceram. Int.
48
,
32143
(
2022
).
50.
X.
Jing
,
Y.
Xia
,
F.
Chen
,
C.
Yang
,
Z.
Yang
, and
S. H. I.
Jaffery
, “
Preparation of superhydrophobic glass surface with high adhesion
,”
Colloids Surf., A
633
,
127861
(
2022
).
51.
M.
Zhou
,
H. F.
Yang
,
B. J.
Li
,
J.
Dai
,
J. K.
Di
,
E. L.
Zhao
, and
L.
Cai
, “
Forming mechanisms and wettability of double-scale structures fabricated by femtosecond laser
,”
Appl. Phys. A: Mater. Sci. Process.
94
,
571
(
2009
).
52.
Y.
Lin
,
J.
Han
,
M.
Cai
,
W.
Liu
,
X.
Luo
,
H.
Zhang
, and
M.
Zhong
, “
Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability
,”
J. Mater. Chem. A
6
,
9049
(
2018
).
53.
A.
De Zanet
,
V.
Casalegno
, and
M.
Salvo
, “
Laser surface texturing of ceramics and ceramic composite materials—A review
,”
Ceram. Int.
47
,
7307
(
2021
).
54.
J. A.
Wahab
,
M. J.
Ghazali
,
W. M. W.
Yusoff
,
Z.
Sajuri
,
S. R.
Shamsudin
, “
Superhydrophobicity of textured ceramic coating for corrosion protection in marine applications—A brief review
,”
Appl. Mech. Mater.
815
,
116
(
2015
).
55.
Z.
Zhu
,
J.-r.
Wu
,
Z.-p.
Wu
,
T.-n.
Wu
,
Y.-c.
He
, and
K.
Yin
, “
Femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces
,”
J. Cent. South Univ.
28
,
3882
(
2021
).
56.
J.
Usman
,
M. H. D.
Othman
,
A. F.
Ismail
,
M. A.
Rahman
,
J.
Jaafar
,
Y. O.
Raji
,
A. O.
Gbadamosi
,
T. H. E.
Badawy
, and
K. A. M.
Said
, “
An overview of superhydrophobic ceramic membrane surface modification for oil–water separation
,”
J. Mater. Res. Technol.
12
,
643
(
2021
).
57.
B. Q. Y.
Chan
,
Z. W. K.
Low
,
S. J. W.
Heng
,
S. Y.
Chan
,
C.
Owh
, and
X. J.
Loh
, “
Recent advances in shape memory soft materials for biomedical applications
,”
ACS Appl. Mater. Interfaces
8
,
10070
(
2016
).
58.
J.
Yong
,
Q.
Yang
,
F.
Chen
,
D.
Zhang
,
U.
Farooq
,
G.
Du
, and
X.
Hou
, “
A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces
,”
J. Mater. Chem. A
2
,
5499
(
2014
).
59.
Z.
Dong
,
M. F.
Schumann
,
M. J.
Hokkanen
,
B.
Chang
,
A.
Welle
,
Q.
Zhou
,
R. H. A.
Ras
,
Z.
Xu
,
M.
Wegener
, and
P. A.
Levkin
, “
Superoleophobic slippery lubricant-infused surfaces: Combining two extremes in the same surface
,”
Adv. Mater.
30
,
1803890
(
2018
).
60.
M.
Hackert-Oschaetzchen
,
R.
Paul
,
A.
Martin
,
G.
Meichsner
,
N.
Lehnert
, and
A.
Schubert
, “
Study on the dynamic generation of the jet shape in Jet Electrochemical Machining
,”
J. Mater. Process. Technol.
223
,
240
(
2015
).
61.
N. A.
Patankar
, “
Vapor stabilizing substrates for superhydrophobicity and superslip
,”
Langmuir
26
,
8783
(
2010
).
You do not currently have access to this content.