Optoelectronic memristors hold the most potential for realizing next-generation neuromorphic computation; however, memristive devices that can integrate excellent resistive switching and both electrical-/light-induced bio-synaptic behaviors are still challenging to develop. In this study, an artificial optoelectronic synapse is proposed and realized using a kesterite-based memristor with Cu2ZnSn(S,Se)4 (CZTSSe) as the switching material and Mo/Ag as the back/top electrode. Benefiting from unique electrical features and a bi-layered structure of CZTSSe, the memristor exhibits highly stable nonvolatile resistive switching with excellent spatial uniformity, concentrated Set/Reset voltage distribution (variation <0.08/0.02 V), high On/Off ratio (>104), and long retention time (>104 s). A possible mechanism of the switching behavior in such a device is proposed. Furthermore, these memristors successfully achieve essential bio-synaptic functions under both electrical and various visible light (470–655 nm) stimulations, including electrical-induced excitatory postsynaptic current, paired pulse facilitation, long-term potentiation, long-term depression, spike-timing-dependent plasticity, as well as light-stimulated short-/long-term plasticity and learning-forgetting-relearning process. As such, the proposed neotype kesterite-based memristor demonstrates significant potential in facilitating artificial optoelectronic synapses and enabling neuromorphic computation.

1.
W.
Wan
,
R.
Kubendran
,
C.
Schaefer
,
S. B.
Eryilmaz
,
W.
Zhang
,
D.
Wu
,
S.
Deiss
,
P.
Raina
,
H.
Qian
,
B.
Gao
,
S.
Joshi
,
H.
Wu
,
H. P.
Wong
, and
G.
Cauwenberghs
, “
A compute-in-memory chip based on resistive random-access memory
,”
Nature
608
,
504
512
(
2022
).
2.
D.
Kumar
,
H.
Li
,
U. K.
Das
,
A. M.
Syed
, and
N.
El-Atab
, “
Flexible solution-processable black-phosphorus-based optoelectronic memristive synapses for neuromorphic computing and artificial visual perception applications
,”
Adv. Mater.
35
,
e2300446
(
2023
).
3.
M.
Spagnolo
,
J.
Morris
,
S.
Piacentini
,
M.
Antesberger
,
F.
Massa
,
A.
Crespi
,
F.
Ceccarelli
,
R.
Osellame
, and
P.
Walther
, “
Experimental photonic quantum memristor
,”
Nat. Photonics
16
,
318
323
(
2022
).
4.
Y.
Pei
,
L.
Yan
,
Z.
Wu
,
J.
Lu
,
J.
Zhao
,
J.
Chen
,
Q.
Liu
, and
X.
Yan
, “
Artificial visual perception nervous system based on low-dimensional material photoelectric memristors
,”
ACS Nano
15
,
17319
17326
(
2021
).
5.
C.
Yang
,
B.
Sun
,
G.
Zhou
,
T.
Guo
,
C.
Ke
,
Y.
Chen
,
J.
Shao
,
Y.
Zhao
, and
H.
Wang
, “
Photoelectric memristor-based machine vision for artificial intelligence applications
,”
ACS Mater. Lett.
5
,
504
526
(
2023
).
6.
P.
Zhao
,
R.
Ji
,
J.
Lao
,
C.
Jiang
,
B.
Tian
,
C.
Luo
,
H.
Lin
,
H.
Peng
, and
C.-G.
Duan
, “
Multifunctional two-terminal optoelectronic synapse based on zinc oxide/poly(3-hexylthiophene) heterojunction for neuromorphic computing
,”
ACS Appl. Polym. Mater.
4
,
5688
5695
(
2022
).
7.
S.
Choi
,
J.
Yang
, and
G.
Wang
, “
Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing
,”
Adv. Mater.
32
,
e2004659
(
2020
).
8.
X.
Zhang
,
H.
Chen
,
S.
Cheng
,
F.
Guo
,
W.
Jie
, and
J.
Hao
, “
Tunable resistive switching in 2D MXene Ti3C2 nanosheets for non-volatile memory and neuromorphic computing
,”
ACS Appl. Mater. Interfaces
14
,
44614
44621
(
2022
).
9.
N. I. M.
Abdallah
,
Y.
Li
,
X.-T.
Wang
,
X.
Li
, and
C.-W.
Wang
, “
Design and fabrication of Ni(OH)2/BiVO4 heterostructured nano-photocatalyst for high-efficient removal of organic dyes
,”
J. Alloys Compd.
831
,
154828
(
2020
).
10.
Z.
Shen
,
C.
Zhao
,
Y.
Qi
,
W.
Xu
,
Y.
Liu
,
I. Z.
Mitrovic
,
L.
Yang
, and
C.
Zhao
, “
Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application
,”
Nanomaterials
10
,
1437
(
2020
).
11.
M. C.
Wu
,
Y. H.
Ting
,
J. Y.
Chen
, and
W. W.
Wu
, “
Low power consumption nanofilamentary ECM and VCM cells in a single sidewall of high-density VRRAM arrays
,”
Adv. Sci.
6
,
1902363
(
2019
).
12.
T.
Wang
,
J.
Meng
,
X.
Zhou
,
Y.
Liu
,
Z.
He
,
Q.
Han
,
Q.
Li
,
J.
Yu
,
Z.
Li
,
Y.
Liu
,
H.
Zhu
,
Q.
Sun
,
D. W.
Zhang
,
P.
Chen
,
H.
Peng
, and
L.
Chen
, “
Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics
,”
Nat. Commun.
13
,
7432
(
2022
).
13.
A. K.
Jena
,
M. C.
Sahu
,
K. U.
Mohanan
,
S. K.
Mallik
,
S.
Sahoo
,
G. K.
Pradhan
, and
S.
Sahoo
, “
Bipolar resistive switching in TiO2 artificial synapse mimicking pavlov’s associative learning
,”
ACS Appl. Mater. Interfaces
15
,
3574
3585
(
2023
).
14.
S.
Pazos
,
T.
Becker
,
M. A.
Villena
,
W.
Zheng
,
Y.
Shen
,
Y.
Yuan
,
O.
Alharbi
,
K.
Zhu
,
J. B.
Roldán
,
G.
Wirth
,
F.
Palumbo
, and
M.
Lanza
, “
High-temporal-resolution characterization reveals outstanding random telegraph noise and the origin of dielectric breakdown in h-BN memristors
,”
Adv. Funct. Mater.
,
2213816
(
2023
).
15.
J. Y.
Mao
,
S.
Wu
,
G.
Ding
,
Z. P.
Wang
,
F. S.
Qian
,
J. Q.
Yang
,
Y.
Zhou
, and
S. T.
Han
, “
A van der Waals integrated damage-free memristor based on layered 2D hexagonal boron nitride
,”
Small
18
,
e2106253
(
2022
).
16.
D.
Li
,
C.
Li
,
J.
Wang
,
M.
Xu
,
J.
Ma
,
D.
Gu
,
F.
Liu
,
Y.
Jiang
, and
W.
Li
, “
Multifunctional analog resistance switching of Si3N4-based memristors through migration of Ag+ ions and Formation of Si-dangling bonds
,”
J. Phys. Chem. Lett.
13
,
5101
5108
(
2022
).
17.
Y.
Zhu
,
J. S.
Liang
,
X.
Shi
, and
Z.
Zhang
, “
Full-inorganic flexible Ag2S memristor with interface resistance-switching for energy-efficient computing
,”
ACS Appl. Mater. Interfaces
14
,
43482
43489
(
2022
).
18.
L.
Yin
,
R.
Cheng
,
Y.
Wen
,
B.
Zhai
,
J.
Jiang
,
H.
Wang
,
C.
Liu
, and
J.
He
, “
High-performance memristors based on ultrathin 2D copper chalcogenides
,”
Adv. Mater.
34
,
e2108313
(
2022
).
19.
S.
Fu
,
J. H.
Park
,
H.
Gao
,
T.
Zhang
,
X.
Ji
,
T.
Fu
,
L.
Sun
,
J.
Kong
, and
J.
Yao
, “
Two-terminal MoS2 memristor and the homogeneous integration with a MoS2 transistor for neural networks
,”
Nano Lett.
23
,
5869
5876
(
2023
).
20.
B.
Zhang
,
W.
Chen
,
J.
Zeng
,
F.
Fan
,
J.
Gu
,
X.
Chen
,
L.
Yan
,
G.
Xie
,
S.
Liu
,
Q.
Yan
,
S. J.
Baik
,
Z. G.
Zhang
,
W.
Chen
,
J.
Hou
,
M. E.
El-Khouly
,
Z.
Zhang
,
G.
Liu
, and
Y.
Chen
, “
90% yield production of polymer nano-memristor for in-memory computing
,”
Nat. Commun.
12
,
1984
(
2021
).
21.
Z.
Shen
,
C.
Zhao
,
T.
Zhao
,
W.
Xu
,
Y.
Liu
,
Y.
Qi
,
I. Z.
Mitrovic
,
L.
Yang
, and
C. Z.
Zhao
, “
Artificial synaptic performance with learning behavior for memristor fabricated with stacked solution-processed switching layers
,”
ACS Appl. Electron. Mater.
3
,
1288
1300
(
2021
).
22.
R. A.
John
,
Y.
Demirag
,
Y.
Shynkarenko
,
Y.
Berezovska
,
N.
Ohannessian
,
M.
Payvand
,
P.
Zeng
,
M. I.
Bodnarchuk
,
F.
Krumeich
,
G.
Kara
,
I.
Shorubalko
,
M. V.
Nair
,
G. A.
Cooke
,
T.
Lippert
,
G.
Indiveri
, and
M. V.
Kovalenko
, “
Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing
,”
Nat. Commun.
13
,
2074
(
2022
).
23.
X.
Guan
,
Z.
Lei
,
X.
Yu
,
C. H.
Lin
,
J. K.
Huang
,
C. Y.
Huang
,
L.
Hu
,
F.
Li
,
A.
Vinu
,
J.
Yi
, and
T.
Wu
, “
Low-dimensional metal-halide perovskites as high-performance materials for memory applications
,”
Small
18
,
e2203311
(
2022
).
24.
Y.
Liu
,
X.
Zhou
,
H.
Yan
,
Z.
Zhu
,
X.
Shi
,
Y.
Peng
,
L.
Chen
,
P.
Chen
, and
H.
Peng
, “
Robust memristive fiber for woven textile memristor
,”
Adv. Funct. Mater.
32
,
2201510
(
2022
).
25.
R. A.
John
,
N.
Yantara
,
S. E.
Ng
,
M. I. B.
Patdillah
,
M. R.
Kulkarni
,
N. F.
Jamaludin
,
J.
Basu
,
Ankit
,
S. G.
Mhaisalkar
,
A.
Basu
, and
N.
Mathews
, “
Diffusive and drift halide perovskite memristive barristors as nociceptive and synaptic emulators for neuromorphic computing
,”
Adv. Mater.
33
,
2007851
(
2021
).
26.
A. C.
Khot
,
T. D.
Dongale
,
J. H.
Park
,
A. V.
Kesavan
, and
T. G.
Kim
, “
Ti3C2-based MXene oxide nanosheets for resistive memory and synaptic learning applications
,”
ACS Appl. Mater. Interfaces
13
,
5216
5227
(
2021
).
27.
Y.
Pei
,
Z.
Li
,
B.
Li
,
Y.
Zhao
,
H.
He
,
L.
Yan
,
X.
Li
,
J.
Wang
,
Z.
Zhao
,
Y.
Sun
,
Z.
Zhou
,
J.
Zhao
,
R.
Guo
,
J.
Chen
, and
X.
Yan
, “
A multifunctional and efficient artificial visual perception nervous system with Sb2Se3/CdS-core/shell (SC) nanorod arrays optoelectronic memristor
,”
Adv. Funct. Mater.
32
,
2203454
(
2022
).
28.
X.
Yan
,
H.
He
,
G.
Liu
,
Z.
Zhao
,
Y.
Pei
,
P.
Liu
,
J.
Zhao
,
Z.
Zhou
,
K.
Wang
, and
H.
Yan
, “
A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3–CeO2 films on silicon
,”
Adv. Mater.
34
,
e2110343
(
2022
).
29.
X.
Jiang
,
X.
Wang
,
X.
Wang
,
X.
Zhang
,
R.
Niu
,
J.
Deng
,
S.
Xu
,
Y.
Lun
,
Y.
Liu
,
T.
Xia
,
J.
Lu
, and
J.
Hong
, “
Manipulation of current rectification in van der Waals ferroionic CuInP2S6
,”
Nat. Commun.
13
,
574
(
2022
).
30.
Y.
Liu
,
Y.
Wu
,
B.
Wang
,
H.
Chen
,
D.
Yi
,
K.
Liu
,
C.-W.
Nan
, and
J.
Ma
, “
Versatile memristor implemented in van der Waals CuInP2S6
,”
Nano Res.
16
,
10191
10197
(
2023
).
31.
Z.
Hu
,
F.
Cao
,
T.
Yan
,
L.
Su
, and
X.
Fang
, “
In situ vulcanization synthesis of CuInS2 nanosheet arrays for a memristor with a high on–off ratio and low power consumption
,”
J. Mater. Chem. C
11
,
244
251
(
2023
).
32.
X. P.
Cui
,
Q.
Ma
,
W. H.
Zhou
,
D. X.
Kou
,
Z. J.
Zhou
,
Y. N.
Meng
,
Y. F.
Qi
,
S. J.
Yuan
,
L. T.
Han
, and
S. X.
Wu
, “
Suppressing interface recombination in CZTSSe solar cells by simple selenization with synchronous interface gradient doping
,”
Nanoscale
15
,
185
194
(
2022
).
33.
A.
Wang
,
M.
He
,
M. A.
Green
,
K.
Sun
, and
X.
Hao
, “
A critical review on the progress of kesterite solar cells: Current strategies and insights
,”
Adv. Energy Mater.
13
,
2203046
(
2022
);
X.
Dong
,
W.
Wei
,
H.
Sun
,
S.
Li
,
J.
Chen
,
J.
Chen
,
X.
Zhang
,
Y.
Zhao
, and
Y.
Li
, “
Neotype kuramite optoelectronic memristor for bio-synaptic plasticity simulations
,”
J. Chem. Phys.
158
,
184702
(
2023
).
[PubMed]
34.
P.
Aabel
,
S.
Sai Guru Srinivasan
,
R.
Amiruddin
, and
M. C.
Santhosh Kumar
, “
Bi-polar switching properties of FTO/CZTS/Ag device
,”
J. Mater. Sci.: Mater. Electron.
34
,
601
(
2023
).
35.
T.
Guo
,
B.
Sun
,
Y.
Zhou
,
H.
Zhao
,
M.
Lei
, and
Y.
Zhao
, “
Overwhelming coexistence of negative differential resistance effect and RRAM
,”
Phys. Chem. Chem. Phys.
20
,
20635
20640
(
2018
).
36.
X.-F.
Dong
,
Y.
Zhao
,
T.-T.
Zheng
,
X.
Li
,
C.-W.
Wang
,
W.-M.
Li
,
Y.
Shao
, and
Y.
Li
, “
Coexistence of bipolar resistive switching and the negative differential resistance effect from a kesterite memristor
,”
J. Phys. Chem. C
125
,
923
930
(
2020
).
37.
Y.
Cui
,
M.
Wang
,
P.
Dong
,
S.
Zhang
,
J.
Fu
,
L.
Fan
,
C.
Zhao
,
S.
Wu
, and
Z.
Zheng
, “
DMF-based large-grain spanning Cu2ZnSn(sx,Se1−x)4 dtyevice with a PCE of 11.76
,”
Adv. Sci.
9
,
e2201241
(
2022
).
38.
X.-F.
Dong
,
T.-T.
Zheng
,
F.-X.
Yang
,
X.-D.
Sun
,
L.
Yu
,
J.-T.
Chen
,
C.-W.
Wang
,
Y.
Zhao
, and
Y.
Li
, “
An effective Li-containing interfacial-treating strategy for performance enhancement of air-processed CZTSSe solar cells
,”
Sol. Energy Mater. Sol. Cells
227
,
111102
(
2021
).
39.
M. S.
Kadhim
,
F.
Yang
,
B.
Sun
,
W.
Hou
,
H.
Peng
,
Y.
Hou
,
Y.
Jia
,
L.
Yuan
,
Y.
Yu
, and
Y.
Zhao
, “
Existence of resistive switching memory and negative differential resistance state in self-colored MoS2/ZnO heterojunction devices
,”
ACS Appl. Electron. Mater.
1
,
318
324
(
2019
).
40.
Y. R.
Jeon
,
J.
Choi
,
J. D.
Kwon
,
M. H.
Park
,
Y.
Kim
, and
C.
Choi
, “
Suppressed stochastic switching behavior and improved synaptic functions in an atomic switch embedded with a 2D NbSe2 material
,”
ACS Appl. Mater. Interfaces
13
,
10161
10170
(
2021
).
41.
K.
Ranganathan
,
M.
Fiegenbaum-Raz
, and
A.
Ismach
, “
Large-scale and robust multifunctional vertically aligned MoS2 photo-memristors
,”
Adv. Funct. Mater.
30
,
2005718
(
2020
).
42.
X.
Dong
,
S.
Li
,
H.
Sun
,
L.
Jian
,
W.
Wei
,
J.
Chen
,
Y.
Zhao
,
J.
Chen
,
X.
Zhang
, and
Y.
Li
, “
Optoelectronic memristive synapse behavior for the architecture of Cu2ZnSnS4@BiOBr embedded in poly(methyl methacrylate)
,”
J. Phys. Chem. Lett.
14
,
1512
1520
(
2023
).
43.
X.
Dong
,
W.
Wei
,
H.
Sun
,
S.
Li
,
J.
Chen
,
J.
Chen
,
X.
Zhang
,
Y.
Zhao
, and
Y.
Li
, “
Neotype kuramite optoelectronic memristor for bio-synaptic plasticity simulations
,”
J. Chem. Phys.
158
,
184702
(
2023
).
44.
R.
Xu
,
H.
Jang
,
M. H.
Lee
,
D.
Amanov
,
Y.
Cho
,
H.
Kim
,
S.
Park
,
H. J.
Shin
, and
D.
Ham
, “
Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV
,”
Nano Lett.
19
,
2411
2417
(
2019
).
45.
F.
Yu
and
L. Q.
Zhu
, “
Ionotronic neuromorphic devices for bionic neural network applications
,”
Phys. Status Solidi RRL
13
,
1800674
(
2019
).
46.
J. T.
Yang
,
C.
Ge
,
J. Y.
Du
,
H. Y.
Huang
,
M.
He
,
C.
Wang
,
H. B.
Lu
,
G. Z.
Yang
, and
K. J.
Jin
, “
Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor
,”
Adv. Mater.
30
,
e1801548
(
2018
).
47.
X.
Yan
,
C.
Qin
,
C.
Lu
,
J.
Zhao
,
R.
Zhao
,
D.
Ren
,
Z.
Zhou
,
H.
Wang
,
J.
Wang
,
L.
Zhang
,
X.
Li
,
Y.
Pei
,
G.
Wang
,
Q.
Zhao
,
K.
Wang
,
Z.
Xiao
, and
H.
Li
, “
Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing
,”
ACS Appl. Mater. Interfaces
11
,
48029
48038
(
2019
).
48.
A.
Abelenda
,
M.
Sánchez
,
G. M.
Ribeiro
,
P. A.
Fernandes
,
P. M. P.
Salomé
,
A. F.
da Cunha
,
J. P.
Leitão
,
M. I. N.
da Silva
, and
J. C.
González
, “
Anomalous persistent photoconductivity in Cu2ZnSnS4 thin films and solar cells
,”
Sol. Energy Mater. Sol. Cells
137
,
164
168
(
2015
).
49.
K. S.
Gour
,
O. P.
Singh
,
B.
Bhattacharyya
,
R.
Parmar
,
S.
Husale
,
T. D.
Senguttuvan
, and
V. N.
Singh
, “
Enhanced photoresponse of Cu2ZnSn(S, Se)4 based photodetector in visible range
,”
J. Alloys Compd.
694
,
119
123
(
2017
).
50.
P.
Lei
,
H.
Duan
,
L.
Qin
,
X.
Wei
,
R.
Tao
,
Z.
Wang
,
F.
Guo
,
M.
Song
,
W.
Jie
, and
J.
Hao
, “
High-performance memristor based on 2D layered BiOI nanosheet for low-power artificial optoelectronic synapses
,”
Adv. Funct. Mater.
32
,
2201276
(
2022
).
51.
S.
Yin
,
C.
Song
,
Y.
Sun
,
L.
Qiao
,
B.
Wang
,
Y.
Sun
,
K.
Liu
,
F.
Pan
, and
X.
Zhang
, “
Electric and light dual-gate tunable MoS2 memtransistor
,”
ACS Appl. Mater. Interfaces
11
,
43344
43350
(
2019
).
52.
W.
Wang
,
S.
Gao
,
Y.
Li
,
W.
Yue
,
H.
Kan
,
C.
Zhang
,
Z.
Lou
,
L.
Wang
, and
G.
Shen
, “
Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system
,”
Adv. Funct. Mater.
31
,
2170247
(
2021
).

Supplementary Material

You do not currently have access to this content.