We aim to improve upon the variational Monte Carlo (VMC) approach for excitations replacing the Jastrow factor by an auxiliary bosonic (AB) ground state and multiplying it by a fermionic component factor. The instantaneous change in imaginary time of an arbitrary excitation in the original interacting fermionic system is obtained by measuring observables via the ground-state distribution of walkers of an AB system that is subject to an auxiliary effective potential. The effective potential is used to (i) drive the AB system’s ground-state configuration space toward the configuration space of the excitations of the original fermionic system and (ii) subtract from a diffusion Monte Carlo (DMC) calculation contributions that can be included in conventional approximations, such as mean-field and configuration interaction (CI) methods. In this novel approach, the AB ground state is treated statistically in DMC, whereas the fermionic component of the original system is expanded in a basis. The excitation energies of the fermionic eigenstates are obtained by sampling a fermion–boson coupling term on the AB ground state. We show that this approach can take advantage of and correct for approximate eigenstates obtained via mean-field calculations or truncated interactions. We demonstrate that the AB ground-state factor incorporates the correlations missed by standard Jastrow factors, further reducing basis truncation errors. Relevant parts of the theory have been tested in soluble model systems and exhibit excellent agreement with exact analytical data and CI and VMC approaches. In particular, for limited basis set expansions and sufficient statistics, AB approaches outperform CI and VMC in terms of basis size for the same systems. The implementation of this method in current codes, despite being demanding, will be facilitated by reusing procedures already developed for calculating ground-state properties with DMC and excitations with VMC.

1.
2.
A.
Messiah
,
Quantum Mechanics
(
Dover Publications, Inc.
,
Mineola, NY
,
1999
).
3.
T.
Kato
,
Commun. Pure. Appl. Math.
10
,
151
(
1957
).
4.
A.
Ammar
,
E.
Giner
, and
A.
Scemama
,
J. Chem. Theory Comput.
18
,
5325
(
2022
).
6.
C. J.
Umrigar
,
K. G.
Wilson
, and
J. W.
Wilkins
,
Phys. Rev. Lett.
60
,
1719
(
1988
).
7.
C. J.
Umrigar
,
J.
Toulouse
,
C.
Filippi
,
S.
Sorella
, and
R. G.
Hennig
,
Phys. Rev. Lett.
98
,
110201
(
2007
).
8.
O.
Valsson
,
P.
Campomanes
,
I.
Tavernelli
,
U.
Rothlisberger
, and
C.
Filippi
,
J. Chem. Theory Comput.
9
,
2441
2454
(
2013
).
9.
L.
Zhao
and
E.
Neuscamman
, arXiv:1702.01481 (
2017
).
10.
S.
Pathak
,
B.
Busemeyer
,
J. N. B.
Rodrigues
, and
L. K.
Wagner
,
J. Chem. Phys.
154
,
034101
(
2021
).
11.
J.
Feldt
and
C.
Filippi
, “
Excited-state calculations with quantum Monte Carlo
,” in
Quantum Chemistry and Dynamics of Excited States
(
John Wiley & Sons, Ltd.
,
2020
), Chap. VIII, pp.
247
275
.
12.
A.
Cuzzocrea
,
S.
Moroni
,
A.
Scemama
, and
C.
Filippi
,
J. Chem. Theory Comput.
18
,
1089
1095
(
2022
).
13.
H. J.
Changlani
,
H.
Zheng
, and
L. K.
Wagner
,
J. Chem. Phys.
143
,
102814
(
2015
).
14.
R.
Grimm
and
R.
Storer
,
J. Comput. Phys.
7
,
134
(
1971
).
15.
J. B.
Anderson
,
J. Chem. Phys.
63
,
1499
(
1975
).
16.
J. B.
Anderson
,
J. Chem. Phys.
65
,
4121
(
1976
).
17.
D.
Ceperley
and
B.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
18.
W.
Foulkes
,
L.
Mitas
,
R.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
19.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
, and
P.
López Ríos
,
J. Phys.: Condens. Matter
22
,
023201
(
2010
).
20.
L.
Shulenburger
and
T. R.
Mattsson
,
Phys. Rev. B
88
,
245117
(
2013
).
21.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
22.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
23.
K.
Saritas
and
J. C.
Grossman
,
J. Phys. Chem. C
121
,
26677
(
2017
).
24.
S.
Zhang
,
J.
Carlson
, and
J. E.
Gubernatis
,
Phys. Rev. B
55
,
7464
(
1997
).
25.
P. R. C.
Kent
,
R. Q.
Hood
,
M. D.
Towler
,
R. J.
Needs
, and
G.
Rajagopal
,
Phys. Rev. B
57
,
15293
(
1998
).
26.
A.
Puzder
,
A. J.
Williamson
,
F. A.
Reboredo
, and
G.
Galli
,
Phys. Rev. Lett.
91
,
157405
(
2003
).
27.
R. Q.
Hood
,
P. R. C.
Kent
,
R. J.
Needs
, and
P. R.
Briddon
,
Phys. Rev. Lett.
91
,
076403
(
2003
).
28.
M.
Drüppel
,
T.
Deilmann
,
P.
Krüger
, and
M.
Rohlfing
,
Nat. Commun.
8
,
2117
(
2017
).
29.
C. E.
Patrick
and
F.
Giustino
,
Nat. Commun.
4
,
2006
(
2013
).
30.
C.
Mitra
,
J. T.
Krogel
,
J. A.
Santana
, and
F. A.
Reboredo
,
J. Chem. Phys.
143
,
164710
(
2015
).
31.
F.
Ma
,
S.
Zhang
, and
H.
Krakauer
,
New J. Phys.
15
,
093017
(
2013
).
32.
J. A.
Santana
,
J. T.
Krogel
,
J.
Kim
,
P. R. C.
Kent
, and
F. A.
Reboredo
,
J. Chem. Phys.
142
,
164705
(
2015
).
33.
J.
Kolorenc
,
S.
Hu
, and
L.
Mitas
,
Phys. Rev. B
82
,
115108
(
2010
).
34.
J. A.
Schiller
,
L. K.
Wagner
, and
E.
Ertekin
,
Phys. Rev. B
92
,
235209
(
2015
).
35.
J.
Yu
,
L. K.
Wagner
, and
E.
Ertekin
,
J. Chem. Phys.
143
,
224707
(
2015
).
36.
L. K.
Wagner
,
Int. J. Quantum Chem.
114
,
94
(
2014
).
37.
L. K.
Wagner
and
P.
Abbamonte
,
Phys. Rev. B
90
,
125129
(
2014
).
38.
K.
Saritas
,
W.
Ming
,
M.-H.
Du
, and
F. A.
Reboredo
,
J. Phys. Chem. Lett.
10
,
67
(
2019
).
39.
D.
Ceperley
and
B.
Bernu
,
J. Chem. Phys.
89
,
6316
(
1988
).
40.
F. A.
Reboredo
,
Phys. Rev. B
80
,
125110
(
2009
).
41.
F. A.
Reboredo
,
R. Q.
Hood
, and
P. R. C.
Kent
,
Phys. Rev. B
79
,
195117
(
2009
).
42.
F. A.
Reboredo
,
J. Chem. Phys.
136
,
204101
(
2012
).
43.
J. T.
Krogel
and
F. A.
Reboredo
,
J. Chem. Phys.
148
,
044110
(
2018
).
44.
G.
Ortiz
,
D.
Ceperley
, and
R.
Martin
,
Phys. Rev. Lett.
71
,
2777
(
1993
).
45.
G.
Ortiz
and
P.
Ballone
,
Phys. Rev. B
56
,
9970
(
1997
).
46.
D. M.
Ceperley
,
J. Stat. Phys.
63
,
1237
(
1991
).
47.
D. M.
Ceperley
,
G. V.
Chester
, and
M. H.
Kalos
,
Phys. Rev. B
17
,
1070
(
1978
).
48.
M.
Hamermesh
,
Group Theory and its Application to Physical Problems
(
Dover Publications, Inc.
,
Mineola, NY
,
1989
).
49.

A third method that samples only the direction of the move yields similar results and is not discussed here.

50.
F. A.
Reboreredo
and
J. T.
Krogel
, “Semi-local observables by diffusion Monte Carlo” (unpublished) (
2021
).
51.
J. K. L.
MacDonald
,
Phys. Rev.
43
,
830
(
1933
).
52.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford Science Publications
,
1989
).
54.
J.
Cioslowski
and
K.
Pernal
,
J. Chem. Phys.
113
,
8434
8443
(
2000
).
You do not currently have access to this content.