First-order derivatives of energies with respect to atomic coordinates are widely computed and used in quantum chemistry simulations. The rapidly emerging technology of quantum computing offers a new paradigm for solving relevant quantum chemistry equations. In this work, we have achieved analytical calculations of atomic forces based on the Hellmann–Feynman theorem within the framework of the variational quantum eigensolver. The accuracy of the approach is demonstrated by calculating the atomic forces of H2, LiH, H2O, and NH3 molecules, which are in excellent agreement with values obtained from full configuration interaction calculations. In particular, for systems with degenerate molecular orbitals, the analytical approach has a significant accuracy advantage over finite-difference-based methods and will not involve additional computational effort on a quantum computer. The calculated forces are further used to optimize the geometries of NH3 and CH4 molecules and to perform ab initio molecular dynamics simulations for the umbrella inversion of NH3, demonstrating the feasibility of the approach in practical quantum chemistry simulations.

1.
R.
Feynman
, “
Simulating physics with computers
,”
Int. J. Theor. Phys.
21
,
467
488
(
1982
).
2.
A.
Aspuru-Guzik
,
A. D.
Dutoi
,
P. J.
Love
, and
M.
Head-Gordon
, “
Simulated quantum computation of molecular energies
,”
Science
309
,
1704
1707
(
2005
).
3.
B. P.
Lanyon
,
J. D.
Whitfield
,
G. G.
Gillett
,
M. E.
Goggin
,
M. P.
Almeida
,
I.
Kassal
,
J. D.
Biamonte
,
M.
Mohseni
,
B. J.
Powell
,
M.
Barbieri
,
A.
Aspuru-Guzik
, and
A. G.
White
, “
Towards quantum chemistry on a quantum computer
,”
Nat. Chem.
2
,
106
111
(
2010
).
4.
P. J. J.
O’Malley
,
R.
Babbush
,
I. D.
Kivlichan
,
J.
Romero
,
J. R.
McClean
,
R.
Barends
,
J.
Kelly
,
P.
Roushan
,
A.
Tranter
,
N.
Ding
,
B.
Campbell
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
A. G.
Fowler
,
E.
Jeffrey
,
E.
Lucero
,
A.
Megrant
,
J. Y.
Mutus
,
M.
Neeley
,
C.
Neill
,
C.
Quintana
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
T. C.
White
,
P. V.
Coveney
,
P. J.
Love
,
H.
Neven
,
A.
Aspuru-Guzik
, and
J. M.
Martinis
, “
Scalable quantum simulation of molecular energies
,”
Phys. Rev. X
6
,
031007
(
2016
).
5.
C.
Hempel
,
C.
Maier
,
J.
Romero
,
J.
McClean
,
T.
Monz
,
H.
Shen
,
P.
Jurcevic
,
B. P.
Lanyon
,
P.
Love
,
R.
Babbush
,
A.
Aspuru-Guzik
,
R.
Blatt
, and
C. F.
Roos
, “
Quantum chemistry calculations on a trapped-ion quantum simulator
,”
Phys. Rev. X
8
,
031022
(
2018
).
6.
Y.
Cao
,
J.
Romero
,
J. P.
Olson
,
M.
Degroote
,
P. D.
Johnson
,
M.
Kieferova
,
I. D.
Kivlichan
,
T.
Menke
,
B.
Peropadre
,
N. P. D.
Sawaya
,
S.
Sim
,
L.
Veis
, and
A.
Aspuru-Guzik
, “
Quantum chemistry in the age of quantum computing
,”
Chem. Rev.
119
,
10856
10915
(
2019
).
7.
S.
McArdle
,
S.
Endo
,
A.
Aspuru-Guzik
,
S.
Benjamin
, and
X.
Yuan
, “
Quantum computational chemistry
,”
Rev. Mod. Phys.
92
,
015003
(
2020
).
8.
B.
Bauer
,
S.
Bravyi
,
M.
Motta
, and
G. K.-L.
Chan
, “
Quantum algorithms for quantum chemistry and quantum materials science
,”
Chem. Rev.
120
,
12685
12717
(
2020
).
9.
M.
Motta
and
J. E.
Rice
, “
Emerging quantum computing algorithms for quantum chemistry
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1580
(
2022
).
10.
X.
Cai
,
W.-H.
Fang
,
H.
Fan
, and
Z.
Li
, “
Quantum computation of molecular response properties
,”
Phys. Rev. Res.
2
,
033324
(
2020
).
11.
K.
Bharti
,
A.
Cervera-Lierta
,
T. H.
Kyaw
,
T.
Haug
,
S.
Alperin-Lea
,
A.
Anand
,
M.
Degroote
,
H.
Heimonen
,
J. S.
Kottmann
,
T.
Menke
,
W.-K.
Mok
,
S.
Sim
,
L.-C.
Kwek
, and
A.
Aspuru-Guzik
, “
Noisy intermediate-scale quantum algorithms
,”
Rev. Mod. Phys.
94
,
015004
(
2022
).
12.
J.
Preskill
, “
Quantum computing in the NISQ era and beyond
,”
Quantum
2
,
79
(
2018
).
13.
M. H.
Yung
,
J.
Casanova
,
A.
Mezzacapo
,
J.
McClean
,
L.
Lamata
,
A.
Aspuru-Guzik
, and
E.
Solano
, “
From transistor to trapped-ion computers for quantum chemistry
,”
Sci. Rep.
4
,
3589
(
2014
).
14.
A.
Peruzzo
,
J.
McClean
,
P.
Shadbolt
,
M.-H.
Yung
,
X.-Q.
Zhou
,
P. J.
Love
,
A.
Aspuru-Guzik
, and
J. L.
O’Brien
, “
A variational eigenvalue solver on a photonic quantum processor
,”
Nat. Commun.
5
,
4213
(
2014
).
15.
M.
Cerezo
,
A.
Arrasmith
,
R.
Babbush
,
S. C.
Benjamin
,
S.
Endo
,
K.
Fujii
,
J. R.
McClean
,
K.
Mitarai
,
X.
Yuan
,
L.
Cincio
, and
P. J.
Coles
, “
Variational quantum algorithms
,”
Nat. Rev. Phys.
3
,
625
644
(
2021
).
16.
J.
Tilly
,
H.
Chen
,
S.
Cao
,
D.
Picozzi
,
K.
Setia
,
Y.
Li
,
E.
Grant
,
L.
Wossnig
,
I.
Rungger
,
G. H.
Booth
, and
J.
Tennyson
, “
The variational quantum eigensolver: A review of methods and best practices
,”
Phys. Rep.
986
,
1
128
(
2022
).
17.
D.
Fedorov
,
B.
Peng
,
N.
Govind
, and
Y.
Alexeev
, “
VQE method: A short survey and recent developments
,”
Mater. Theory
6
,
2
(
2022
).
18.
U.
Azad
and
H.
Singh
, “
Quantum chemistry calculations using energy derivatives on quantum computers
,”
Chem. Phys.
558
,
111506
(
2022
).
19.
I.
Kassal
and
A.
Aspuru-Guzik
, “
Quantum algorithm for molecular properties and geometry optimization
,”
J. Chem. Phys.
131
,
224102
(
2009
).
20.
T. E.
O’Brien
,
B.
Senjean
,
R.
Sagastizabal
,
X.
Bonet-Monroig
,
A.
Dutkiewicz
,
F.
Buda
,
L.
DiCarlo
, and
L.
Visscher
, “
Calculating energy derivatives for quantum chemistry on a quantum computer
,”
npj Quantum Inf.
5
,
113
(
2019
).
21.
K.
Mitarai
,
Y. O.
Nakagawa
, and
W.
Mizukami
, “
Theory of analytical energy derivatives for the variational quantum eigensolver
,”
Phys. Rev. Res.
2
,
013129
(
2020
).
22.
D. A.
Fedorov
,
M. J.
Otten
,
S. K.
Gray
, and
Y.
Alexeev
, “
Ab initio molecular dynamics on quantum computers
,”
J. Chem. Phys.
154
,
164103
(
2021
).
23.
I. O.
Sokolov
,
P. K.
Barkoutsos
,
L.
Moeller
,
P.
Suchsland
,
G.
Mazzola
, and
I.
Tavernelli
, “
Microcanonical and finite-temperature ab initio molecular dynamics simulations on quantum computers
,”
Phys. Rev. Res.
3
,
013125
(
2021
).
24.
T. E.
O’Brien
,
M.
Streif
,
N. C.
Rubin
,
R.
Santagati
,
Y.
Su
,
W. J.
Huggins
,
J. J.
Goings
,
N.
Moll
,
E.
Kyoseva
,
M.
Degroote
,
C. S.
Tautermann
,
J.
Lee
,
D. W.
Berry
,
N.
Wiebe
, and
R.
Babbush
, “
Efficient quantum computation of molecular forces and other energy gradients
,”
Phys. Rev. Res.
4
,
043210
(
2022
).
25.
P.
Pulay
, “
Analytical derivatives, forces, force constants, molecular geometries, and related response properties in electronic structure theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
169
181
(
2014
).
26.
V.
Bakken
,
T.
Helgaker
,
W.
Klopper
, and
K.
Ruud
, “
The calculation of molecular geometrical properties in the Hellmann-Feynman approximation
,”
Mol. Phys.
96
,
653
671
(
1999
).
27.
R.
Parrish
,
E.
Hohenstein
,
P.
McMahon
, and
T.
Martinez
, “
Hybrid quantum/classical derivative theory: Analytical gradients and excited-state dynamics for the multistate contracted variational quantum eigensolver
,” arXiv:1906.08728 (
2019
).
28.
R. M.
Parrish
,
G.-L. R.
Anselmetti
, and
C.
Gogolin
, “
Analytical ground- and excited-state gradients for molecular electronic structure theory from hybrid quantum/classical methods
,” arXiv:2110.05040 (
2021
).
29.
S.
Yalouz
,
E.
Koridon
,
B.
Senjean
,
B.
Lasorne
,
F.
Buda
, and
L.
Visscher
, “
Analytical nonadiabatic couplings and gradients within the state-averaged orbital-optimized variational quantum eigensolver
,”
J. Chem. Theory Comput.
18
,
776
794
(
2022
).
30.
P.
Jordan
and
E.
Wigner
, “
Über das Paulische Äquivalenzverbot
,”
Z. Phys.
47
,
631
651
(
1928
).
31.
W.
Kutzelnigg
, “
Quantum chemistry in Fock space. I. The universal wave and energy operators
,”
J. Chem. Phys.
77
,
3081
3097
(
1982
).
32.
R. J.
Bartlett
,
S. A.
Kucharski
, and
J.
Noga
, “
Alternative coupled-cluster ansatze II. The unitary coupled-cluster method
,”
Chem. Phys. Lett.
155
,
133
140
(
1989
).
33.
F. A.
Evangelista
,
G. K.-L.
Chan
, and
G. E.
Scuseria
, “
Exact parameterization of fermionic wave functions via unitary coupled cluster theory
,”
J. Chem. Phys.
151
,
244112
(
2019
).
34.
J.
Lee
,
W. J.
Huggins
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
Generalized unitary coupled cluster wave functions for quantum computation
,”
J. Chem. Theory Comput.
15
,
311
324
(
2019
).
35.
T.
Helgaker
and
P.
Jørgensen
, “
Calculation of geometrical derivatives in molecular electronic structure theory
,” in
Methods in Computational Molecular Physics
, edited by
S.
Wilson
and
G. H. F.
Diercksen
(
Springer US
,
1992
), pp.
353
421
.
36.
Q.
Gong
,
Q.
Man
,
Y.
Li
,
M.
Dou
,
Q.
Wang
,
Y.-C.
Wu
, and
G.-P.
Guo
, “
Simulation of chemical reaction dynamics based on quantum computing
,” arXiv:2303.08571 (
2023
).
37.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
, “
PySCF: The Python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
38.
J. R.
McClean
,
N. C.
Rubin
,
K. J.
Sung
,
I. D.
Kivlichan
,
X.
Bonet-Monroig
,
Y.
Cao
,
C.
Dai
,
E. S.
Fried
,
C.
Gidney
,
B.
Gimby
,
P.
Gokhale
,
T.
Haner
,
T.
Hardikar
,
V.
Havlicek
,
O.
Higgott
,
C.
Huang
,
J.
Izaac
,
Z.
Jiang
,
X.
Liu
,
S.
McArdle
,
M.
Neeley
,
T.
O’Brien
,
B.
O’Gorman
,
I.
Ozfidan
,
M. D.
Radin
,
J.
Romero
,
N. P. D.
Sawaya
,
B.
Senjean
,
K.
Setia
,
S.
Sim
,
D. S.
Steiger
,
M.
Steudtner
,
Q.
Sun
,
W.
Sun
,
D.
Wang
,
F.
Zhang
, and
R.
Babbush
, “
OpenFermion: The electronic structure package for quantum computers
,”
Quantum Sci. Technol.
5
,
034014
(
2020
).
39.
Y.
Fan
,
J.
Liu
,
X.
Zeng
,
Z.
Xu
,
H.
Shang
,
Z.
Li
, and
J.
Yang
, “
Q2Chemistry: A quantum computation platform for quantum chemistry
,”
JUSTC
52
,
2
(
2022
).
40.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
I.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
, and
P.
van Mulbregt
, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
41.
C. C. J.
Roothaan
, “
New developments in molecular orbital theory
,”
Rev. Mod. Phys.
23
,
69
89
(
1951
).
42.
F.
Bouakline
, “
Umbrella inversion of ammonia redux
,”
Phys. Chem. Chem. Phys.
23
,
20509
20523
(
2021
).
43.
L.
Verlet
, “
Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
,”
Phys. Rev.
159
,
98
(
1967
).
You do not currently have access to this content.