The computational modeling of electrochemical interfaces and their applications in electrocatalysis has attracted great attention in recent years. While tremendous progress has been made in this area, however, the accurate atomistic descriptions at the electrode/electrolyte interfaces remain a great challenge. The Computational Hydrogen Electrode (CHE) method and continuum modeling of the solvent and electrolyte interactions form the basis for most of these methodological developments. Several posterior corrections have been added to the CHE method to improve its accuracy and widen its applications. The most recently developed grand canonical potential approaches with the embedded diffuse layer models have shown considerable improvement in defining interfacial interactions at electrode/electrolyte interfaces over the state-of-the-art computational models for electrocatalysis. In this Review, we present an overview of these different computational models developed over the years to quantitatively probe the thermodynamics and kinetics of electrochemical reactions in the presence of an electrified catalyst surface under various electrochemical environments. We begin our discussion by giving a brief picture of the different continuum solvation approaches, implemented within the ab initio method to effectively model the solvent and electrolyte interactions. Next, we present the thermodynamic and kinetic modeling approaches to determine the activity and stability of the electrocatalysts. A few applications to these approaches are also discussed. We conclude by giving an outlook on the different machine learning models that have been integrated with the thermodynamic approaches to improve their efficiency and widen their applicability.

1.
J. A.
Turner
, “
Sustainable hydrogen production
,”
Science
305
,
972
974
(
2004
).
2.
S.
Chu
and
A.
Majumdar
, “
Opportunities and challenges for a sustainable energy future
,”
Nature
488
,
294
303
(
2012
).
3.
N. S.
Lewis
and
D. G.
Nocera
, “
Powering the planet: Chemical challenges in solar energy utilization
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
15729
15735
(
2006
).
4.
J. M.
Campos-Martin
,
G.
Blanco-Brieva
, and
J. L.
Fierro
, “
Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process
,”
Angew. Chem., Int. Ed.
45
,
6962
6984
(
2006
).
5.
G. A.
Olah
, “
Beyond oil and gas: The methanol economy
,”
Angew. Chem., Int. Ed.
44
,
2636
2639
(
2005
).
6.
S.
Chu
,
Y.
Cui
, and
N.
Liu
, “
The path towards sustainable energy
,”
Nat. Mater.
16
,
16
22
(
2017
).
7.
Z. W.
Seh
,
J.
Kibsgaard
,
C. F.
Dickens
,
I.
Chorkendorff
,
J. K.
Nørskov
, and
T. F.
Jaramillo
, “
Combining theory and experiment in electrocatalysis: Insights into materials design
,”
Science
355
,
eaad4998
(
2017
).
8.
M. K.
Debe
, “
Electrocatalyst approaches and challenges for automotive fuel cells
,”
Nature
486
,
43
51
(
2012
).
9.
B. C.
Steele
and
A.
Heinzel
, “
Materials for fuel-cell technologies
,”
Nature
414
,
345
352
(
2001
).
10.
M.
Graetzel
, “
Artificial photosynthesis: Water cleavage into hydrogen and oxygen by visible light
,”
Acc. Chem. Res.
14
,
376
384
(
1981
).
11.
A. J.
Bard
and
M. A.
Fox
, “
Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen
,”
Acc. Chem. Res.
28
,
141
145
(
1995
).
12.
S.
Nitopi
,
E.
Bertheussen
,
S. B.
Scott
,
X.
Liu
,
A. K.
Engstfeld
,
S.
Horch
,
B.
Seger
,
I. E.
Stephens
,
K.
Chan
,
C.
Hahn
et al, “
Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte
,”
Chem. Rev.
119
,
7610
7672
(
2019
).
13.
C. G.
Vayenas
,
R. E.
White
, and
M. E.
Gamboa-Aldeco
,
Modern Aspects of Electrochemistry 42
(
Springer Science & Business Media
,
2008
), Vol.
42
.
14.
J. O.
Bockris
and
T. N.
Veziroglu
, “
Estimates of the price of hydrogen as a medium for wind and solar sources
,”
Int. J. Hydrogen Energy
32
,
1605
1610
(
2007
).
15.
J. O.
Bockris
, “
Hydrogen no longer a high cost solution to global warming: New ideas
,”
Int. J. Hydrogen Energy
33
,
2129
2131
(
2008
).
16.
M.
Gattrell
,
N.
Gupta
, and
A.
Co
, “
A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper
,”
J. Electroanal. Chem.
594
,
1
19
(
2006
).
17.
A. D.
Handoko
,
F.
Wei
,
Jenndy
,
B. S.
Yeo
, and
Z. W.
Seh
, “
Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques
,”
Nat. Catal.
1
,
922
934
(
2018
).
18.
J.
Greeley
,
T. F.
Jaramillo
,
J.
Bonde
,
I.
Chorkendorff
, and
J. K.
Nørskov
, “
Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
,”
Nat. Mater.
5
,
909
913
(
2006
).
19.
Y.
Chen
,
C. W.
Li
, and
M. W.
Kanan
, “
Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles
,”
J. Am. Chem. Soc.
134
,
19969
19972
(
2012
).
20.
J.
Luo
,
J.-H.
Im
,
M. T.
Mayer
,
M.
Schreier
,
M. K.
Nazeeruddin
,
N.-G.
Park
,
S. D.
Tilley
,
H. J.
Fan
, and
M.
Grätzel
, “
Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts
,”
Science
345
,
1593
1596
(
2014
).
21.
Y.-F.
Li
and
A.
Selloni
, “
Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx
,”
ACS Catal.
4
,
1148
1153
(
2014
).
22.
K. A.
Stoerzinger
,
L.
Qiao
,
M. D.
Biegalski
, and
Y.
Shao-Horn
, “
Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2
,”
J. Phys. Chem. Lett.
5
,
1636
1641
(
2014
).
23.
Y.
Lee
,
J.
Suntivich
,
K. J.
May
,
E. E.
Perry
, and
Y.
Shao-Horn
, “
Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions
,”
J. Phys. Chem. Lett.
3
,
399
404
(
2012
).
24.
J.
Greeley
, “
Theoretical heterogeneous catalysis: Scaling relationships and computational catalyst design
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
605
635
(
2016
).
25.
J. K.
Nørskov
,
F.
Abild-Pedersen
,
F.
Studt
, and
T.
Bligaard
, “
Density functional theory in surface chemistry and catalysis
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
937
943
(
2011
).
26.
J. H.
Montoya
,
L. C.
Seitz
,
P.
Chakthranont
,
A.
Vojvodic
,
T. F.
Jaramillo
, and
J. K.
Nørskov
, “
Materials for solar fuels and chemicals
,”
Nat. Mater.
16
,
70
81
(
2017
).
27.
J.
Rossmeisl
,
E.
Skúlason
,
M. E.
Björketun
,
V.
Tripkovic
, and
J. K.
Nørskov
, “
Modeling the electrified solid–liquid interface
,”
Chem. Phys. Lett.
466
,
68
71
(
2008
).
28.
N.
Marzari
,
A.
Ferretti
, and
C.
Wolverton
, “
Electronic-structure methods for materials design
,”
Nat. Mater.
20
,
736
749
(
2021
).
29.
J. A.
Gauthier
,
S.
Ringe
,
C. F.
Dickens
,
A. J.
Garza
,
A. T.
Bell
,
M.
Head-Gordon
,
J. K.
Nørskov
, and
K.
Chan
, “
Challenges in modeling electrochemical reaction energetics with polarizable continuum models
,”
ACS Catal.
9
,
920
931
(
2018
).
30.
M.
Sprik
,
J.
Hutter
, and
M.
Parrinello
, “
Ab initio molecular dynamics simulation of liquid water: Comparison of three gradient-corrected density functionals
,”
J. Chem. Phys.
105
,
1142
1152
(
1996
).
31.
O.
Andreussi
and
G.
Fisicaro
, “
Continuum embeddings in condensed-matter simulations
,”
Int. J. Quantum Chem.
119
,
e25725
(
2019
).
32.
B.
Mennucci
,
E.
Cances
, and
J.
Tomasi
, “
Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications
,”
J. Phys. Chem. B
101
,
10506
10517
(
1997
).
33.
J.
Tomasi
and
M.
Persico
, “
Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent
,”
Chem. Rev.
94
,
2027
2094
(
1994
).
34.
C. J.
Cramer
and
D. G.
Truhlar
, “
SMx continuum models for condensed phases
,” in
Trends and Perspectives in Modern Computational Science
edited by G. Maroulis and T. E. Simos, (
Brill Academic, Amsterdam
,
2006
), Vol.
6
, pp.
112
140
.
35.
K.
Reuter
, “
Ab initio thermodynamics and first-principles microkinetics for surface catalysis
,”
Catal. Lett.
146
,
541
563
(
2016
).
36.
K.
Reuter
and
M.
Scheffler
, “
Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure
,”
Phys. Rev. B
65
,
035406
(
2001
).
37.
J. K.
Nørskov
,
J.
Rossmeisl
,
A.
Logadottir
,
L.
Lindqvist
,
J. R.
Kitchin
,
T.
Bligaard
, and
H.
Jonsson
, “
Origin of the overpotential for oxygen reduction at a fuel-cell cathode
,”
J. Phys. Chem. B
108
,
17886
17892
(
2004
).
38.
N. G.
Hörmann
,
O.
Andreussi
, and
N.
Marzari
, “
Grand canonical simulations of electrochemical interfaces in implicit solvation models
,”
J. Chem. Phys.
150
,
041730
(
2019
).
39.
R.
Sundararaman
,
W. A.
Goddard
, and
T. A.
Arias
, “
Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry
,”
J. Chem. Phys.
146
,
114104
(
2017
).
40.
S.
Ringe
,
N. G.
Hormann
,
H.
Oberhofer
, and
K.
Reuter
, “
Implicit solvation methods for catalysis at electrified interfaces
,”
Chem. Rev.
122
,
10777
10820
(
2021
).
41.
J. A.
Gauthier
,
C. F.
Dickens
,
H. H.
Heenen
,
S.
Vijay
,
S.
Ringe
, and
K.
Chan
, “
Unified approach to implicit and explicit solvent simulations of electrochemical reaction energetics
,”
J. Chem. Theory Comput.
15
,
6895
6906
(
2019
).
42.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3094
(
2005
).
43.
J.-L.
Fattebert
and
F.
Gygi
, “
Density functional theory for efficient ab initio molecular dynamics simulations in solution
,”
J. Comput. Chem.
23
,
662
666
(
2002
).
44.
M.
Cossi
,
G.
Scalmani
,
N.
Rega
, and
V.
Barone
, “
New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution
,”
J. Chem. Phys.
117
,
43
54
(
2002
).
45.
S.
Miertuš
,
E.
Scrocco
, and
J.
Tomasi
, “
Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects
,”
Chem. Phys.
55
,
117
129
(
1981
).
46.
C.
Amovilli
,
V.
Barone
,
R.
Cammi
,
E.
Cancès
,
M.
Cossi
,
B.
Mennucci
,
C. S.
Pomelli
, and
J.
Tomasi
, “
Recent advances in the description of solvent effects with the polarizable continuum model
,”
Adv. Quantum Chem.
32
,
227
261
(
1998
).
47.
M.
Cossi
and
V.
Barone
, “
Analytical second derivatives of the free energy in solution by polarizable continuum models
,”
J. Chem. Phys.
109
,
6246
6254
(
1998
).
48.
R.
Cammi
and
J.
Tomasi
, “
Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges
,”
J. Comput. Chem.
16
,
1449
1458
(
1995
).
49.
A.
Klamt
and
G.
Schüürmann
, “
COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
,”
J. Chem. Soc., Perkin Trans. 2
1993
,
799
805
.
50.
A.
Klamt
,
COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design
(
Elsevier
,
2005
).
51.
D. J.
Giesen
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
A semiempirical quantum mechanical solvation model for solvation free energies in all alkane solvents
,”
J. Phys. Chem.
99
,
7137
7146
(
1995
).
52.
D. J.
Giesen
,
M. Z.
Gu
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
A universal organic solvation model
,”
J. Org. Chem.
61
,
8720
8721
(
1996
).
53.
D. J.
Giesen
,
G. D.
Hawkins
,
D. A.
Liotard
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
A universal model for the quantum mechanical calculation of free energies of solvation in non-aqueous solvents
,”
Theor. Chem. Acc.
98
,
85
109
(
1997
).
54.
C. J.
Cramer
,
D. G.
Truhlar
et al, “
Implicit solvation models: Equilibria, structure, spectra, and dynamics
,”
Chem. Rev.
99
,
2161
2200
(
1999
).
55.
T.
Zhu
,
J.
Li
,
G. D.
Hawkins
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Density functional solvation model based on CM2 atomic charges
,”
J. Chem. Phys.
109
,
9117
9133
(
1998
).
56.
G.
Fisicaro
,
L.
Genovese
,
O.
Andreussi
,
S.
Mandal
,
N. N.
Nair
,
N.
Marzari
, and
S.
Goedecker
, “
Soft-sphere continuum solvation in electronic-structure calculations
,”
J. Chem. Theory Comput.
13
,
3829
3845
(
2017
).
57.
A.
Klamt
,
B.
Mennucci
,
J.
Tomasi
,
V.
Barone
,
C.
Curutchet
,
M.
Orozco
, and
F. J.
Luque
, “
On the performance of continuum solvation methods. A comment on ‘universal approaches to solvation modeling’
,”
Acc. Chem. Res.
42
,
489
492
(
2009
).
58.
D. A.
Scherlis
,
J.-L.
Fattebert
,
F.
Gygi
,
M.
Cococcioni
, and
N.
Marzari
, “
A unified electrostatic and cavitation model for first-principles molecular dynamics in solution
,”
J. Chem. Phys.
124
,
074103
(
2006
).
59.
O.
Andreussi
,
I.
Dabo
, and
N.
Marzari
, “
Revised self-consistent continuum solvation in electronic-structure calculations
,”
J. Chem. Phys.
136
,
064102
(
2012
).
60.
K.
Mathew
,
R.
Sundararaman
,
K.
Letchworth-Weaver
,
T.
Arias
, and
R. G.
Hennig
, “
Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
,”
J. Chem. Phys.
140
,
084106
(
2014
).
61.
R.
Sundararaman
and
W. A.
Goddard
, “
The charge-asymmetric nonlocally determined local-electric (candle) solvation model
,”
J. Chem. Phys.
142
,
064107
(
2015
).
62.
R.
Sundararaman
and
K.
Schwarz
, “
Evaluating continuum solvation models for the electrode-electrolyte interface: Challenges and strategies for improvement
,”
J. Chem. Phys.
146
,
084111
(
2017
).
63.
C.
Dupont
,
O.
Andreussi
, and
N.
Marzari
, “
Self-consistent continuum solvation (SCCS): The case of charged systems
,”
J. Chem. Phys.
139
,
214110
(
2013
).
64.
O.
Andreussi
,
N. G.
Hormann
,
F.
Nattino
,
G.
Fisicaro
,
S.
Goedecker
, and
N.
Marzari
, “
Solvent-aware interfaces in continuum solvation
,”
J. Chem. Theory Comput.
15
,
1996
2009
(
2019
).
65.
J. B.
Foresman
,
T. A.
Keith
,
K. B.
Wiberg
,
J.
Snoonian
, and
M. J.
Frisch
, “
Solvent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations
,”
J. Phys. Chem.
100
,
16098
16104
(
1996
).
66.
J.-L.
Fattebert
and
F.
Gygi
, “
First-principles molecular dynamics simulations in a continuum solvent
,”
Int. J. Quantum Chem.
93
,
139
147
(
2003
).
67.
O.
Andreussi
,
F.
Nattino
, and
N.
Georg Hörmann
, “
Continuum embedding models for electrolyte solutions in first-principles simulations of electrochemistry
,” in
Atomic-Scale Modelling of Electrochemical Systems
(
John Wiley and Sons
,
2021
), pp.
93
137
.
68.
F.
Nattino
,
M.
Truscott
,
N.
Marzari
, and
O.
Andreussi
, “
Continuum models of the electrochemical diffuse layer in electronic-structure calculations
,”
J. Chem. Phys.
150
,
041722
(
2019
).
69.
N.
Karmodak
and
O.
Andreussi
, “
Catalytic activity and stability of two-dimensional materials for the hydrogen evolution reaction
,”
ACS Energy Lett.
5
,
885
891
(
2020
).
70.
M.
Truscott
and
O.
Andreussi
, “
Field-aware interfaces in continuum solvation
,”
J. Phys. Chem. B
123
,
3513
3524
(
2019
).
71.
C. P.
Kelly
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants
,”
J. Phys. Chem. A
110
,
2493
2499
(
2006
).
72.
N. G.
Hörmann
,
Z.
Guo
,
F.
Ambrosio
,
O.
Andreussi
,
A.
Pasquarello
, and
N.
Marzari
, “
Absolute band alignment at semiconductor-water interfaces using explicit and implicit descriptions for liquid water
,”
npj Comput. Mater.
5
,
100
(
2019
).
73.
L.
Blumenthal
,
J. M.
Kahk
,
R.
Sundararaman
,
P.
Tangney
, and
J.
Lischner
, “
Energy level alignment at semiconductor–water interfaces from atomistic and continuum solvation models
,”
RSC Adv.
7
,
43660
43670
(
2017
).
74.
N.
Karmodak
,
L.
Bursi
, and
O.
Andreussi
, “
Oxygen evolution and reduction on two-dimensional transition metal dichalcogenides
,”
J. Phys. Chem. Lett.
13
,
58
65
(
2021
).
75.
D.
Beglov
and
B.
Roux
, “
An integral equation to describe the solvation of polar molecules in liquid water
,”
J. Phys. Chem. B
101
,
7821
7826
(
1997
).
76.
F.
Hirata
,
Molecular Theory of Solvation
(
Springer Science & Business Media
,
2003
), Vol.
24
.
77.
J. K.
Percus
and
G. J.
Yevick
, “
Analysis of classical statistical mechanics by means of collective coordinates
,”
Phys. Rev.
110
,
1
(
1958
).
78.
J.
Van Leeuwen
,
J.
Groeneveld
, and
J.
De Boer
, “
New method for the calculation of the pair correlation function. I
,”
Physica
25
,
792
808
(
1959
).
79.
A.
Kovalenko
and
F.
Hirata
, “
Self-consistent description of a metal–water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model
,”
J. Chem. Phys.
110
,
10095
10112
(
1999
).
80.
M.
Otani
and
O.
Sugino
, “
First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach
,”
Phys. Rev. B
73
,
115407
(
2006
).
81.
S.
Nishihara
and
M.
Otani
, “
Hybrid solvation models for bulk, interface, and membrane: Reference interaction site methods coupled with density functional theory
,”
Phys. Rev. B
96
,
115429
(
2017
).
82.
I.
Dabo
,
Y.
Li
,
N.
Bonnet
, and
N.
Marzari
, “
Ab initio electrochemical properties of electrode surfaces
,” in
Fuel Cell Science: Theory, Fundamentals, and Biocatalysis
(
Wiley
,
2010
), pp.
415
431
.
83.
H. v.
Helmholtz
, “
Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern, mit anwendung auf die thierisch-elektrischen versuche (schluss.)
,”
Ann. Phys.
165
,
353
377
(
1853
).
84.
M.
Gouy
, “
Sur la constitution de la charge électrique à la surface d’un électrolyte
,”
J. Phys. Theor. Appl.
9
,
457
468
(
1910
).
85.
D. L.
Chapman
, “
LI. A contribution to the theory of electrocapillarity
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
25
,
475
481
(
1913
).
86.
D.
Gunceler
,
K.
Letchworth-Weaver
,
R.
Sundararaman
,
K. A.
Schwarz
, and
T.
Arias
, “
The importance of nonlinear fluid response in joint density-functional theory studies of battery systems
,”
Modell. Simul. Mater. Sci. Eng.
21
,
074005
(
2013
).
87.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
, “
Steric effects in electrolytes: A modified Poisson-Boltzmann equation
,”
Phys. Rev. Lett.
79
,
435
(
1997
).
88.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
, “
Adsorption of large ions from an electrolyte solution: A modified Poisson–Boltzmann equation
,”
Electrochim. Acta
46
,
221
229
(
2000
).
89.
S.
Ringe
,
H.
Oberhofer
,
C.
Hille
,
S.
Matera
, and
K.
Reuter
, “
Function-space-based solution scheme for the size-modified Poisson–Boltzmann equation in full-potential DFT
,”
J. Chem. Theory Comput.
12
,
4052
4066
(
2016
).
90.
S.
Ringe
,
H.
Oberhofer
, and
K.
Reuter
, “
Transferable ionic parameters for first-principles Poisson-Boltzmann solvation calculations: Neutral solutes in aqueous monovalent salt solutions
,”
J. Chem. Phys.
146
,
134103
(
2017
).
91.
O.
Andreussi
and
N.
Marzari
, “
Electrostatics of solvated systems in periodic boundary conditions
,”
Phys. Rev. B
90
,
245101
(
2014
).
92.
R.
Sundararaman
,
K.
Letchworth-Weaver
,
K. A.
Schwarz
,
D.
Gunceler
,
Y.
Ozhabes
, and
T.
Arias
, “
JDFTx: Software for joint density-functional theory
,”
SoftwareX
6
,
278
284
(
2017
).
93.
J. A.
Gauthier
,
C. F.
Dickens
,
S.
Ringe
, and
K.
Chan
, “
Practical considerations for continuum models applied to surface electrochemistry
,”
ChemPhysChem
20
,
3074
3080
(
2019
).
94.
A.
Ben-Naim
,
Molecular Theory of Solutions
(
OUP Oxford
,
2006
).
95.
H.
Weingärtner
and
A.
Ben-Naim
,
Solvation Thermodynamics
(
Plenum Press
,
New York
,
1987; 1989
), p.
246
.
96.
M.
Cococcioni
,
F.
Mauri
,
G.
Ceder
, and
N.
Marzari
, “
Electronic-enthalpy functional for finite systems under pressure
,”
Phys. Rev. Lett.
94
,
145501
(
2005
).
97.
P.
Atkins
and
J.
de Paula
, “
Atkins
,”
Phys. Chem.
8
,
798
(
2006
).
98.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2016
).
99.
N.
Marković
and
P.
Ross
, Jr.
, “
Surface science studies of model fuel cell electrocatalysts
,”
Surf. Sci. Rep.
45
,
117
229
(
2002
).
100.
N. M.
Marković
,
R. R.
Adžić
,
B.
Cahan
, and
E.
Yeager
, “
Structural effects in electrocatalysis: Oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions
,”
J. Electroanal. Chem.
377
,
249
259
(
1994
).
101.
K. A.
Persson
,
B.
Waldwick
,
P.
Lazic
, and
G.
Ceder
, “
Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states
,”
Phys. Rev. B
85
,
235438
(
2012
).
102.
M.
Karamad
,
H. A.
Hansen
,
J.
Rossmeisl
, and
J. K.
Nørskov
, “
Mechanistic pathway in the electrochemical reduction of CO2 on RuO2
,”
ACS Catal.
5
,
4075
4081
(
2015
).
103.
L. D.
Chen
,
M.
Urushihara
,
K.
Chan
, and
J. K.
Nørskov
, “
Electric field effects in electrochemical CO2 reduction
,”
ACS Catal.
6
,
7133
7139
(
2016
).
104.
J. H.
Montoya
,
C.
Tsai
,
A.
Vojvodic
, and
J. K.
Nørskov
, “
The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations
,”
ChemSusChem
8
,
2180
2186
(
2015
).
105.
S. A.
Akhade
,
R. M.
Nidzyn
,
G.
Rostamikia
, and
M. J.
Janik
, “
Using Brønsted-Evans-Polanyi relations to predict electrode potential-dependent activation energies
,”
Catal. Today
312
,
82
91
(
2018
).
106.
H.
Xiao
,
T.
Cheng
,
W. A.
Goddard
, and
R.
Sundararaman
, “
Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111)
,”
J. Am. Chem. Soc.
138
,
483
486
(
2016
).
107.
K. J. P.
Schouten
,
E. P.
Gallent
, and
M. T. M.
Koper
, “
The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes
,”
J. Electroanal. Chem.
716
,
53
57
(
2014
).
108.
S. N.
Steinmann
and
P.
Sautet
, “
Assessing a first-principles model of an electrochemical interface by comparison with experiment
,”
J. Phys. Chem. C
120
,
5619
5623
(
2016
).
109.
H. O.
Stern
, “
Zur theorie der elektrolytischen doppelschicht
,”
Z. Elektrochem. Angew. Phys. Chem.
30
,
508
516
(
1924
).
110.
H.
Helmholtz
, “
Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern mit anwendung auf die thierisch-elektrischen versuche
,”
Ann. Phys. Chem.
165
,
211
233
(
1853
).
111.
E.
Skúlason
,
G. S.
Karlberg
,
J.
Rossmeisl
,
T.
Bligaard
,
J.
Greeley
,
H.
Jónsson
, and
J. K.
Nørskov
, “
Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the pt(111) electrode
,”
Phys. Chem. Chem. Phys.
9
,
3241
3250
(
2007
).
112.
E. R.
Kötz
,
H.
Neff
, and
K.
Müller
, “
A UPS, XPS and work function study of emersed silver, platinum and gold electrodes
,”
J. Electroanal. Chem. Interfacial Electrochem.
215
,
331
344
(
1986
).
113.
J. E. B.
Randles
, “
The real hydration energies of ions
,”
Trans. Faraday Soc.
52
,
1573
1581
(
1956
).
114.
K.
Chan
and
J. K.
Nørskov
, “
Electrochemical barriers made simple
,”
J. Phys. Chem. Lett.
6
,
2663
2668
(
2015
).
115.
N. G.
Hörmann
,
N.
Marzari
, and
K.
Reuter
, “
Electrosorption at metal surfaces from first principles
,”
npj Computat. Mater.
6
,
136
(
2020
).
116.
M. M.
Melander
, “
Grand canonical ensemble approach to electrochemical thermodynamics, kinetics, and model Hamiltonians
,”
Curr. Opin. Electrochem.
29
,
100749
(
2021
).
117.
G.
Kastlunger
,
P.
Lindgren
, and
A. A.
Peterson
, “
Controlled-potential simulation of elementary electrochemical reactions: Proton discharge on metal surfaces
,”
J. Phys. Chem. C
122
,
12771
12781
(
2018
).
118.
P.
Lindgren
,
G.
Kastlunger
, and
A. A.
Peterson
, “
Electrochemistry from the atomic scale, in the electronically grand-canonical ensemble
,”
J. Chem. Phys.
157
,
180902
(
2022
).
119.
R.
Parsons
, “
General equations for the kinetics of electrode processes
,”
Trans. Faraday Soc.
47
,
1332
1344
(
1951
).
120.
K. S.
Exner
, “
Why approximating electrocatalytic activity by a single free-energy change is insufficient
,”
Electrochim. Acta
375
,
137975
(
2021
).
121.
K. S.
Exner
and
H.
Over
, “
Kinetics of electrocatalytic reactions from first-principles: A critical comparison with the ab initio thermodynamics approach
,”
Acc. Chem. Res.
50
,
1240
1247
(
2017
).
122.
K. S.
Exner
, “
A universal descriptor for the screening of electrode materials for multiple-electron processes: Beyond the thermodynamic overpotential
,”
ACS Catal.
10
,
12607
12617
(
2020
).
123.
K. S.
Exner
, “
Activity-stability volcano plots for material optimization in electrocatalysis
,”
ChemCatChem
11
,
3234
3241
(
2019
).
124.
F.
Abild-Pedersen
,
J.
Greeley
,
F.
Studt
,
J.
Rossmeisl
,
T. R.
Munter
,
P. G.
Moses
,
E.
Skulason
,
T.
Bligaard
, and
J. K.
Nørskov
, “
Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
,”
Phys. Rev. Lett.
99
,
016105
(
2007
).
125.
A.
Logadottir
,
T. H.
Rod
,
J. K.
Nørskov
,
B.
Hammer
,
S.
Dahl
, and
C.
Jacobsen
, “
The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts
,”
J. Catal.
197
,
229
231
(
2001
).
126.
A.
Michaelides
,
Z.-P.
Liu
,
C.
Zhang
,
A.
Alavi
,
D. A.
King
, and
P.
Hu
, “
Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces
,”
J. Am. Chem. Soc.
125
,
3704
3705
(
2003
).
127.
S.
Wang
,
V.
Petzold
,
V.
Tripkovic
,
J.
Kleis
,
J. G.
Howalt
,
E.
Skulason
,
E.
Fernández
,
B.
Hvolbæk
,
G.
Jones
,
A.
Toftelund
et al, “
Universal transition state scaling relations for (de)hydrogenation over transition metals
,”
Phys. Chem. Chem. Phys.
13
,
20760
20765
(
2011
).
128.
J. K.
Nørskov
,
T.
Bligaard
,
J.
Rossmeisl
, and
C. H.
Christensen
, “
Towards the computational design of solid catalysts
,”
Nat. Chem.
1
,
37
46
(
2009
).
129.
S. B.
Vendelbo
,
C. F.
Elkjær
,
H.
Falsig
,
I.
Puspitasari
,
P.
Dona
,
L.
Mele
,
B.
Morana
,
B.
Nelissen
,
R.
Van Rijn
,
J.
Creemer
et al, “
Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation
,”
Nat. Mater.
13
,
884
890
(
2014
).
130.
R. B.
Rankin
and
J.
Greeley
, “
Trends in selective hydrogen peroxide production on transition metal surfaces from first principles
,”
ACS Catal.
2
,
2664
2672
(
2012
).
131.
A. J.
Medford
,
C.
Shi
,
M. J.
Hoffmann
,
A. C.
Lausche
,
S. R.
Fitzgibbon
,
T.
Bligaard
, and
J. K.
Nørskov
, “
CatMAP: A software package for descriptor-based microkinetic mapping of catalytic trends
,”
Catal. Lett.
145
,
794
807
(
2015
).
132.
H.
Falsig
,
J.
Shen
,
T. S.
Khan
,
W.
Guo
,
G.
Jones
,
S.
Dahl
, and
T.
Bligaard
, “
On the structure sensitivity of direct no decomposition over low-index transition metal facets
,”
Top. Catal.
57
,
80
88
(
2014
).
133.
A.
Vojvodic
,
A. J.
Medford
,
F.
Studt
,
F.
Abild-Pedersen
,
T. S.
Khan
,
T.
Bligaard
, and
J.
Nørskov
, “
Exploring the limits: A low-pressure, low-temperature Haber–Bosch process
,”
Chem. Phys. Lett.
598
,
108
112
(
2014
).
134.
G.
Jones
,
T.
Bligaard
,
F.
Abild-Pedersen
, and
J. K.
Nørskov
, “
Using scaling relations to understand trends in the catalytic activity of transition metals
,”
J. Phys.: Condens. Matter
20
,
064239
(
2008
).
135.
V.
Viswanathan
,
H. A.
Hansen
,
J.
Rossmeisl
, and
J. K.
Nørskov
, “
Universality in oxygen reduction electrocatalysis on metal surfaces
,”
ACS Catal.
2
,
1654
1660
(
2012
).
136.
H. A.
Hansen
,
V.
Viswanathan
, and
J. K.
Nørskov
, “
Unifying kinetic and thermodynamic analysis of 2 e and 4 e reduction of oxygen on metal surfaces
,”
J. Phys. Chem. C
118
,
6706
6718
(
2014
).
137.
C. F.
Dickens
,
C.
Kirk
, and
J. K.
Nørskov
, “
Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: Beyond the limiting potential volcano
,”
J. Phys. Chem. C
123
,
18960
18977
(
2019
).
138.
J. A.
Gauthier
,
C. F.
Dickens
,
L. D.
Chen
,
A. D.
Doyle
, and
J. K.
Nørskov
, “
Solvation effects for oxygen evolution reaction catalysis on IrO2(110)
,”
J. Phys. Chem. C
121
,
11455
11463
(
2017
).
139.
A.
Kulkarni
,
S.
Siahrostami
,
A.
Patel
, and
J. K.
Nørskov
, “
Understanding catalytic activity trends in the oxygen reduction reaction
,”
Chem. Rev.
118
,
2302
2312
(
2018
).
140.
A. R.
Zeradjanin
,
P.
Narangoda
,
J.
Masa
, and
R.
Schlögl
, “
What controls activity trends of electrocatalytic hydrogen evolution reaction? Activation energy versus frequency factor
,”
ACS Catal.
12
,
11597
11605
(
2022
).
141.
A.
Jain
,
Z.
Wang
, and
J. K.
Nørskov
, “
Stable two-dimensional materials for oxygen reduction and oxygen evolution reactions
,”
ACS Energy Lett.
4
,
1410
1411
(
2019
).
142.
M.
Pourbaix
,
Atlas of Electrochemical Equilibria in Aqueous Solutions
(
NACE
,
1966
).
143.
N.
Takeno
, “
Atlas of Eh-pH diagrams; geological survey of japan open file report no. 419, 2005
,” Google Scholar There is no corresponding record for this reference, 77–79.
144.
D. G.
Brookins
,
Eh-pH Diagrams for Geochemistry
(
Springer Science & Business Media
,
2012
).
145.
A. K.
Singh
,
L.
Zhou
,
A.
Shinde
,
S. K.
Suram
,
J. H.
Montoya
,
D.
Winston
,
J. M.
Gregoire
, and
K. A.
Persson
, “
Electrochemical stability of metastable materials
,”
Chem. Mater.
29
,
10159
10167
(
2017
).
146.
A. M.
Patel
,
J. K.
Nørskov
,
K. A.
Persson
, and
J. H.
Montoya
, “
Efficient Pourbaix diagrams of many-element compounds
,”
Phys. Chem. Chem. Phys.
21
,
25323
25327
(
2019
).
147.
A.
Jain
,
J.
Montoya
,
S.
Dwaraknath
,
N. E.
Zimmermann
,
J.
Dagdelen
,
M.
Horton
,
P.
Huck
,
D.
Winston
,
S.
Cholia
,
S. P.
Ong
et al, “
The materials project: Accelerating materials design through theory-driven data and tools
,” in
Handbook of Materials Modeling: Methods: Theory and Modeling
(
Springer
,
2020
), pp.
1751
1784
.
148.
N.
Mounet
,
M.
Gibertini
,
P.
Schwaller
,
D.
Campi
,
A.
Merkys
,
A.
Marrazzo
,
T.
Sohier
,
I. E.
Castelli
,
A.
Cepellotti
,
G.
Pizzi
, and
N.
Marzari
, “
Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds
,”
Nat. Nanotechnol.
13
,
246
252
(
2018
).
149.
S.
Haastrup
,
M.
Strange
,
M.
Pandey
,
T.
Deilmann
,
P. S.
Schmidt
,
N. F.
Hinsche
,
M. N.
Gjerding
,
D.
Torelli
,
P. M.
Larsen
,
A. C.
Riis-Jensen
et al, “
The computational 2D materials database: High-throughput modeling and discovery of atomically thin crystals
,”
2D Mater.
5
,
042002
(
2018
).
150.
N.
Karmodak
,
S.
Vijay
,
G.
Kastlunger
, and
K.
Chan
, “
Computational screening of single and di-atom catalysts for electrochemical CO2 reduction
,”
ACS Catal.
12
,
4818
4824
(
2022
).
151.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Machine learning force fields
,”
Chem. Rev.
121
,
10142
10186
(
2021
).
152.
I.
Poltavsky
and
A.
Tkatchenko
, “
Machine learning force fields: Recent advances and remaining challenges
,”
J. Phys. Chem. Lett.
12
,
6551
6564
(
2021
).
153.
M.
Meuwly
, “
Machine learning for chemical reactions
,”
Chem. Rev.
121
,
10218
10239
(
2021
).
154.
P. S.
Rice
,
Z.-P.
Liu
, and
P.
Hu
, “
Hydrogen coupling on platinum using artificial neural network potentials and DFT
,”
J. Phys. Chem. Lett.
12
,
10637
10645
(
2021
).
155.
L.
Chen
,
X.
Zhang
,
A.
Chen
,
S.
Yao
,
X.
Hu
, and
Z.
Zhou
, “
Targeted design of advanced electrocatalysts by machine learning
,”
Chin. J. Catal.
43
,
11
32
(
2022
).
156.
T.
Wen
,
C.-Z.
Wang
,
M. J.
Kramer
,
Y.
Sun
,
B.
Ye
,
H.
Wang
,
X.
Liu
,
C.
Zhang
,
F.
Zhang
,
K.-M.
Ho
, and
N.
Wang
, “
Development of a deep machine learning interatomic potential for metalloid-containing Pd-Si compounds
,”
Phys. Rev. B
100
,
174101
(
2019
).
157.
N.
Artrith
, “
Machine learning for the modeling of interfaces in energy storage and conversion materials
,”
J. Phys.: Energy
1
,
032002
(
2019
).
158.
G. P.
Pun
,
V.
Yamakov
,
J.
Hickman
,
E.
Glaessgen
, and
Y.
Mishin
, “
Development of a general-purpose machine-learning interatomic potential for aluminum by the physically informed neural network method
,”
Phys. Rev. Mater.
4
,
113807
(
2020
).
159.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
160.
A. P.
Bartók
,
S.
De
,
C.
Poelking
,
N.
Bernstein
,
J. R.
Kermode
,
G.
Csányi
, and
M.
Ceriotti
, “
Machine learning unifies the modeling of materials and molecules
,”
Sci. Adv.
3
,
e1701816
(
2017
).
161.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
, “
Machine learning for molecular simulation
,”
Annu. Rev. Phys. Chem.
71
,
361
390
(
2020
).
162.
J.
Behler
and
G.
Csányi
, “
Machine learning potentials for extended systems: A perspective
,”
Eur. Phys. J. B
94
,
142
(
2021
).
163.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
Von Lilienfeld
, “
Machine learning of molecular electronic properties in chemical compound space
,”
New J. Phys.
15
,
095003
(
2013
).
164.
T.
Bereau
,
D.
Andrienko
, and
O. A.
Von Lilienfeld
, “
Transferable atomic multipole machine learning models for small organic molecules
,”
J. Chem. Theory Comput.
11
,
3225
3233
(
2015
).
165.
N.
Artrith
,
T.
Morawietz
, and
J.
Behler
, “
High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
,”
Phys. Rev. B
83
,
153101
(
2011
).
166.
S. A.
Ghasemi
,
A.
Hofstetter
,
S.
Saha
, and
S.
Goedecker
, “
Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
,”
Phys. Rev. B
92
,
045131
(
2015
).
167.
X.
Xie
,
K. A.
Persson
, and
D. W.
Small
, “
Incorporating electronic information into machine learning potential energy surfaces via approaching the ground-state electronic energy as a function of atom-based electronic populations
,”
J. Chem. Theory Comput.
16
,
4256
4270
(
2020
).
168.
T. W.
Ko
,
J. A.
Finkler
,
S.
Goedecker
, and
J.
Behler
, “
A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer
,”
Nat. Commun.
12
,
398
(
2021
).
169.
K. T.
Schütt
,
M.
Gastegger
,
A.
Tkatchenko
,
K.-R.
Müller
, and
R. J.
Maurer
, “
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
,”
Nat. Commun.
10
,
5024
(
2019
).
170.
X.
Zhang
,
Y.
Tian
,
L.
Chen
,
X.
Hu
, and
Z.
Zhou
, “
Machine learning: A new paradigm in computational electrocatalysis
,”
J. Phys. Chem. Lett.
13
,
7920
7930
(
2022
).
171.
M.
Kulichenko
,
J. S.
Smith
,
B.
Nebgen
,
Y. W.
Li
,
N.
Fedik
,
A. I.
Boldyrev
,
N.
Lubbers
,
K.
Barros
, and
S.
Tretiak
, “
The rise of neural networks for materials and chemical dynamics
,”
J. Phys. Chem. Lett.
12
,
6227
6243
(
2021
).
172.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
173.
A. E.
Mikkelsen
,
J.
Schiøtz
,
T.
Vegge
, and
K. W.
Jacobsen
, “
Is the water/Pt (111) interface ordered at room temperature?
,”
J. Chem. Phys.
155
,
224701
(
2021
).
174.
A. E.
Mikkelsen
,
H. H.
Kristoffersen
,
J.
Schiøtz
,
T.
Vegge
,
H. A.
Hansen
, and
K. W.
Jacobsen
, “
Structure and energetics of liquid water–hydroxyl layers on Pt(111)
,”
Phys. Chem. Chem. Phys.
24
,
9885
9890
(
2022
).
175.
S. K.
Natarajan
and
J.
Behler
, “
Neural network molecular dynamics simulations of solid–liquid interfaces: Water at low-index copper surfaces
,”
Phys. Chem. Chem. Phys.
18
,
28704
28725
(
2016
).
176.
S.
Kondati Natarajan
and
J.
Behler
, “
Self-diffusion of surface defects at copper–water interfaces
,”
J. Phys. Chem. C
121
,
4368
4383
(
2017
).
177.
C.
Schran
,
K.
Brezina
, and
O.
Marsalek
, “
Committee neural network potentials control generalization errors and enable active learning
,”
J. Chem. Phys.
153
,
104105
(
2020
).
178.
P.
Schienbein
and
J.
Blumberger
, “
Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid DFT accuracy using committee neural network potentials
,”
Phys. Chem. Chem. Phys.
24
,
15365
15375
(
2022
).
179.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
180.
X.
Li
,
W.
Paier
, and
J.
Paier
, “
Machine learning in computational surface science and catalysis: Case studies on water and metal–oxide interfaces
,”
Front. Chem.
8
,
601029
(
2020
).
181.
R.
Jinnouchi
,
F.
Karsai
, and
G.
Kresse
, “
On-the-fly machine learning force field generation: Application to melting points
,”
Phys. Rev. B
100
,
014105
(
2019
).
182.
R.
Jinnouchi
,
J.
Lahnsteiner
,
F.
Karsai
,
G.
Kresse
, and
M.
Bokdam
, “
Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference
,”
Phys. Rev. Lett.
122
,
225701
(
2019
).
183.
S.
Yue
,
M. C.
Muniz
,
M. F.
Calegari Andrade
,
L.
Zhang
,
R.
Car
, and
A. Z.
Panagiotopoulos
, “
When do short-range atomistic machine-learning models fall short?
,”
J. Chem. Phys.
154
,
034111
(
2021
).
184.
A.
Grisafi
and
M.
Ceriotti
, “
Incorporating long-range physics in atomic-scale machine learning
,”
J. Chem. Phys.
151
,
204105
(
2019
).
185.
M. A.
Caro
, “
Optimizing many-body atomic descriptors for enhanced computational performance of machine learning based interatomic potentials
,”
Phys. Rev. B
100
,
024112
(
2019
).
186.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
You do not currently have access to this content.