The diffusion of small molecular penetrants through polymeric materials represents an important fundamental problem, relevant to the design of materials for applications such as coatings and membranes. Polymer networks hold promise in these applications because dramatic differences in molecular diffusion can result from subtle changes in the network structure. In this paper, we use molecular simulation to understand the role that cross-linked network polymers have in governing the molecular motion of penetrants. By considering the local, activated alpha relaxation time of the penetrant and its long-time diffusive dynamics, we can determine the relative importance of activated glassy dynamics on penetrants at the segmental scale vs entropic mesh confinement on penetrant diffusion. We vary several parameters, such as the cross-linking density, temperature, and penetrant size, to show that cross-links primarily affect molecular diffusion through the modification of the matrix glass transition, with local penetrant hopping at least partially coupled to the segmental relaxation of the polymer network. This coupling is very sensitive to the local activated segmental dynamics of the surrounding matrix, and we also show that penetrant transport is affected by dynamic heterogeneity at low temperatures. To contrast, only at high temperatures and for large penetrants or when the dynamic heterogeneity effect is weak, does the effect of mesh confinement become significant, even though penetrant diffusion more broadly empirically follows similar trends as established models of mesh confinement-based transport.

1.
B. J.
Blaiszik
,
S. L. B.
Kramer
,
S. C.
Olugebefola
,
J. S.
Moore
,
N. R.
Sottos
, and
S. R.
White
, “
Self-healing polymers and composites
,”
Annu. Rev. Mater. Res.
40
(
1
),
179
211
(
2010
).
2.
J. F.
Patrick
,
M. J.
Robb
,
N. R.
Sottos
,
J. S.
Moore
, and
S. R.
White
, “
Polymers with autonomous life-cycle control
,”
Nature
540
(
7633
),
363
370
(
2016
).
3.
H.
Wang
,
J. K.
Keum
,
A.
Hiltner
,
E.
Baer
,
B.
Freeman
,
A.
Rozanski
, and
A.
Galeski
, “
Confined crystallization of polyethylene oxide in nanolayer assemblies
,”
Science
323
(
5915
),
757
760
(
2009
).
4.
C.
Wang
,
Q.
Ge
,
D.
Ting
,
D.
Nguyen
,
H.-R.
Shen
,
J.
Chen
,
H. N.
Eisen
,
J.
Heller
,
R.
Langer
, and
D.
Putnam
, “
Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines
,”
Nat. Mater.
3
(
3
),
190
196
(
2004
).
5.
J.
Li
and
D. J.
Mooney
, “
Designing hydrogels for controlled drug delivery
,”
Nat. Rev. Mater.
1
(
12
),
16071
(
2016
).
6.
S. R.
White
,
N. R.
Sottos
,
P. H.
Geubelle
,
J. S.
Moore
,
M. R.
Kessler
,
S. R.
Sriram
,
E. N.
Brown
, and
S.
Viswanathan
, “
Autonomic healing of polymer composites
,”
Nature
409
(
6822
),
794
797
(
2001
).
7.
M.
Galizia
,
W. S.
Chi
,
Z. P.
Smith
,
T. C.
Merkel
,
R. W.
Baker
, and
B. D.
Freeman
, “
50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities
,”
Macromolecules
50
(
20
),
7809
7843
(
2017
).
8.
D. F.
Sanders
,
Z. P.
Smith
,
R.
Guo
,
L. M.
Robeson
,
J. E.
McGrath
,
D. R.
Paul
, and
B. D.
Freeman
, “
Energy-efficient polymeric gas separation membranes for a sustainable future: A review
,”
Polymer
54
(
18
),
4729
4761
(
2013
).
9.
C. H.
Lau
,
P.
Li
,
F.
Li
,
T.-S.
Chung
, and
D. R.
Paul
, “
Reverse-selective polymeric membranes for gas separations
,”
Prog. Polym. Sci.
38
(
5
),
740
766
(
2013
).
10.
Z.-X.
Low
,
P. M.
Budd
,
N. B.
McKeown
, and
D. A.
Patterson
, “
Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers
,”
Chem. Rev.
118
(
12
),
5871
5911
(
2018
).
11.
D.
Li
,
X.
Zhang
,
J.
Yao
,
G. P.
Simon
, and
H.
Wang
, “
Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination
,”
Chem. Commun.
47
(
6
),
1710
(
2011
).
12.
G. M.
Geise
,
H.-S.
Lee
,
D. J.
Miller
,
B. D.
Freeman
,
J. E.
McGrath
, and
D. R.
Paul
, “
Water purification by membranes: The role of polymer science
,”
J. Polym. Sci., Part B: Polym. Phys.
48
(
15
),
1685
1718
(
2010
).
13.
G. M.
Geise
,
D. R.
Paul
, and
B. D.
Freeman
, “
Fundamental water and salt transport properties of polymeric materials
,”
Prog. Polym. Sci.
39
(
1
),
1
42
(
2014
).
14.
X.
Feng
and
R. Y. M.
Huang
, “
Liquid separation by membrane pervaporation: A review
,”
Ind. Eng. Chem. Res.
36
(
4
),
1048
1066
(
1997
).
15.
D. S.
Sholl
and
R. P.
Lively
, “
Seven chemical separations to change the world
,”
Nature
532
(
7600
),
435
437
(
2016
).
16.
N.
Kosinov
,
J.
Gascon
,
F.
Kapteijn
, and
E. J. M.
Hensen
, “
Recent developments in zeolite membranes for gas separation
,”
J. Membr. Sci.
499
,
65
79
(
2016
).
17.
C. A.
Trickett
,
A.
Helal
,
B. A.
Al-Maythalony
,
Z. H.
Yamani
,
K. E.
Cordova
, and
O. M.
Yaghi
, “
The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion
,”
Nat. Rev. Mater.
2
(
8
),
17045
(
2017
).
18.
Q.
Qian
,
P. A.
Asinger
,
M. J.
Lee
,
G.
Han
,
K.
Mizrahi Rodriguez
,
S.
Lin
,
F. M.
Benedetti
,
A. X.
Wu
,
W. S.
Chi
, and
Z. P.
Smith
, “
MOF-based membranes for gas separations
,”
Chem. Rev.
120
(
16
),
8161
8266
(
2020
).
19.
S.
Yuan
,
X.
Li
,
J.
Zhu
,
G.
Zhang
,
P.
Van Puyvelde
, and
B.
Van der Bruggen
, “
Covalent organic frameworks for membrane separation
,”
Chem. Soc. Rev.
48
(
10
),
2665
2681
(
2019
).
20.
A. A.
Gusev
,
S.
Arizzi
,
U. W.
Suter
, and
D. J.
Moll
, “
Dynamics of light gases in rigid matrices of dense polymers
,”
J. Chem. Phys.
99
(
3
),
2221
2227
(
1993
).
21.
A. A.
Gusev
and
U. W.
Suter
, “
Dynamics of small molecules in dense polymers subject to thermal motion
,”
J. Chem. Phys.
99
(
3
),
2228
2234
(
1993
).
22.
N. C.
Karayiannis
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
, “
Detailed atomistic simulation of the segmental dynamics and barrier properties of amorphous poly(ethylene terephthalate) and poly(ethylene isophthalate)
,”
Macromolecules
37
(
8
),
2978
2995
(
2004
).
23.
N.
Vergadou
and
D. N.
Theodorou
, “
Molecular modeling investigations of sorption and diffusion of small molecules in glassy polymers
,”
Membranes
9
(
8
),
98
(
2019
).
24.
B.
Mei
and
K. S.
Schweizer
, “
Theory of the effects of specific attractions and chain connectivity on the activated dynamics and selective transport of penetrants in polymer melts
,”
Macromolecules
55
(
20
),
9134
9151
(
2022
).
25.
G. S.
Sheridan
and
C. M.
Evans
, “
Understanding the roles of mesh size, Tg, and segmental dynamics on probe diffusion in dense polymer networks
,”
Macromolecules
54
(
23
),
11198
11208
(
2021
).
26.
B.
Mei
,
G. S.
Sheridan
,
C. M.
Evans
, and
K. S.
Schweizer
, “
Elucidation of the physical factors that control activated transport of penetrants in chemically complex glass-forming liquids
,”
Proc. Natl. Acad. Sci.
119
(
41
),
e2210094119
(
2022
).
27.
L.-H.
Cai
,
S.
Panyukov
, and
M.
Rubinstein
, “
Hopping diffusion of nanoparticles in polymer matrices
,”
Macromolecules
48
(
3
),
847
862
(
2015
).
28.
V.
Sorichetti
,
V.
Hugouvieux
, and
W.
Kob
, “
Dynamics of nanoparticles in polydisperse polymer networks: From free diffusion to hopping
,”
Macromolecules
54
(
18
),
8575
8589
(
2021
).
29.
Z.
Xu
,
X.
Dai
,
X.
Bu
,
Y.
Yang
,
X.
Zhang
,
X.
Man
,
X.
Zhang
,
M.
Doi
, and
L.-T.
Yan
, “
Enhanced heterogeneous diffusion of nanoparticles in semiflexible networks
,”
ACS Nano
15
(
3
),
4608
4616
(
2021
).
30.
Z. E.
Dell
and
K. S.
Schweizer
, “
Theory of localization and activated hopping of nanoparticles in cross-linked networks and entangled polymer melts
,”
Macromolecules
47
(
1
),
405
414
(
2014
).
31.
R.
Poling-Skutvik
,
R.
Krishnamoorti
, and
J. C.
Conrad
, “
Size-dependent dynamics of nanoparticles in unentangled polyelectrolyte solutions
,”
ACS Macro Lett.
4
(
10
),
1169
1173
(
2015
).
32.
M.
Smith
,
R.
Poling-Skutvik
,
A. H.
Slim
,
R. C.
Willson
, and
J. C.
Conrad
, “
Dynamics of flexible viruses in polymer solutions
,”
Macromolecules
54
(
10
),
4557
4563
(
2021
).
33.
R.
Poling-Skutvik
,
A. H.
Slim
,
S.
Narayanan
,
J. C.
Conrad
, and
R.
Krishnamoorti
, “
Soft interactions modify the diffusive dynamics of polymer-grafted nanoparticles in solutions of free polymer
,”
ACS Macro Lett.
8
(
8
),
917
922
(
2019
).
34.
T. Q.
McKenzie-Smith
,
J. F.
Douglas
, and
F. W.
Starr
, “
Explaining the sensitivity of polymer segmental relaxation to additive size based on the localization model
,”
Phys. Rev. Lett.
127
(
27
),
277802
(
2021
).
35.
B.
Mei
,
T.-W.
Lin
,
G. S.
Sheridan
,
C. M.
Evans
,
C. E.
Sing
, and
K. S.
Schweizer
, “
How segmental dynamics and mesh confinement determine the selective diffusivity of molecules in cross-linked dense polymer networks
,”
ACS Cent. Sci.
9
,
508
(
2023
).
36.
B.
Mei
,
T.-W.
Lin
,
C. E.
Sing
, and
K. S.
Schweizer
, “
Self-consistent hopping theory of activated relaxation and diffusion of dilute penetrants in dense crosslinked polymer networks
,”
J. Chem. Phy.
158
(18), 184901 (2023).
37.
Y.
Chen
,
R.
Ma
,
X.
Qian
,
R.
Zhang
,
X.
Huang
,
H.
Xu
,
M.
Zhou
, and
J.
Liu
, “
Nanoparticle mobility within permanently cross-linked polymer networks
,”
Macromolecules
53
(
11
),
4172
4184
(
2020
).
38.
D. B.
Hall
,
D. D.
Deppe
,
K. E.
Hamilton
,
A.
Dhinojwala
, and
J. M.
Torkelson
, “
Probe translational and rotational diffusion in polymers near Tg: Roles of probe size, shape, and secondary bonding in deviations from Debye–Stokes–Einstein scaling
,”
J. Non-Cryst. Solids
235–237
,
48
56
(
1998
).
39.
K.
Zhang
and
S. K.
Kumar
, “
Molecular simulations of solute transport in polymer melts
,”
ACS Macro Lett.
6
(
8
),
864
868
(
2017
).
40.
K.
Zhang
,
D.
Meng
,
F.
Müller-Plathe
, and
S. K.
Kumar
, “
Coarse-grained molecular dynamics simulation of activated penetrant transport in glassy polymers
,”
Soft Matter
14
(
3
),
440
447
(
2018
).
41.
C.
Xue
,
X.
Shi
,
Y.
Tian
,
X.
Zheng
, and
G.
Hu
, “
Diffusion of nanoparticles with activated hopping in crowded polymer solutions
,”
Nano Lett.
20
(
5
),
3895
3904
(
2020
).
42.
B.
Mei
,
T.-W.
Lin
,
G. S.
Sheridan
,
C. M.
Evans
,
C. E.
Sing
, and
K. S.
Schweizer
, “
Structural relaxation and vitrification in dense cross-linked polymer networks: Simulation, theory, and experiment
,”
Macromolecules
55
(
10
),
4159
4173
(
2022
).
43.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
San Diego, CA
,
2002
).
44.
T. S.
Jain
and
J. J.
de Pablo
, “
Influence of confinement on the vibrational density of states and the Boson peak in a polymer glass
,”
J. Chem. Phys.
120
(
19
),
9371
9375
(
2004
).
45.
R. A.
Riggleman
,
J. F.
Douglas
, and
J. J.
de Pablo
, “
Tuning polymer melt fragility with antiplasticizer additives
,”
J. Chem. Phys.
126
(
23
),
234903
(
2007
).
46.
D. S.
Simmons
and
J. F.
Douglas
, “
Nature and interrelations of fast dynamic properties in a coarse-grained glass-forming polymer melt
,”
Soft Matter
7
(
22
),
11010
(
2011
).
47.
J. H.
Mangalara
,
M. E.
Mackura
,
M. D.
Marvin
, and
D. S.
Simmons
, “
The relationship between dynamic and pseudo-thermodynamic measures of the glass transition temperature in nanostructured materials
,”
J. Chem. Phys.
146
(
20
),
203316
(
2017
).
48.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
,
2nd ed.
(
Oxford University Press
,
Oxford
,
2017
).
49.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
(
8
),
5057
5086
(
1990
).
50.
M.
Rubinstein
and
R.
Colby
,
Polymer Physics
(
Oxford University Press
,
NY
,
2003
).
51.
D. R.
Tree
,
A.
Muralidhar
,
P. S.
Doyle
, and
K. D.
Dorfman
, “
Is DNA a good model polymer?
,”
Macromolecules
46
(
20
),
8369
8382
(
2013
).
52.
S.
Dutta
,
T.
Pan
, and
C. E.
Sing
, “
Bridging simulation length scales of bottlebrush polymers using a wormlike cylinder model
,”
Macromolecules
52
(
13
),
4858
4874
(
2019
).
53.
J. F. J.
Coelho
,
E. Y.
Carvalho
,
D. S.
Marques
,
A. V.
Popov
,
V.
Percec
, and
M. H.
Gil
, “
Influence of the isomeric structures of butyl acrylate on its single-electron transfer-degenerative chain transfer living radical polymerization in water catalyzed by Na2S2O4
,”
J. Polym. Sci., Part A: Polym. Chem.
46
(
19
),
6542
6551
(
2008
).
54.
E. S.
Minina
,
P. A.
Sánchez
,
C. N.
Likos
, and
S. S.
Kantorovich
, “
The influence of the magnetic filler concentration on the properties of a microgel particle: Zero-field case
,”
J. Magn. Magn. Mater.
459
,
226
230
(
2018
).
55.
A. J.
Moreno
and
F.
Lo Verso
, “
Computational investigation of microgels: Synthesis and effect of the microstructure on the deswelling behavior
,”
Soft Matter
14
(
34
),
7083
7096
(
2018
).
56.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
57.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
(
1
),
511
519
(
1984
).
58.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
(
3
),
1695
1697
(
1985
).
59.
A.
Shavit
and
R. A.
Riggleman
, “
Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers
,”
Macromolecules
46
(
12
),
5044
5052
(
2013
).
60.
C.
Bennemann
,
W.
Paul
,
J.
Baschnagel
, and
K.
Binder
, “
Investigating the influence of different thermodynamic paths on the structural relaxation in a glass-forming polymer melt
,”
J. Phys.: Condens. Matter
11
(
10
),
2179
2192
(
1999
).
61.
R. A.
Riggleman
,
H.-N.
Lee
,
M. D.
Ediger
, and
J. J.
de Pablo
, “
Free volume and finite-size effects in a polymer glass under stress
,”
Phys. Rev. Lett.
99
(
21
),
215501
(
2007
).
62.
D.
Diaz Vela
and
D. S.
Simmons
, “
The microscopic origins of stretched exponential relaxation in two model glass-forming liquids as probed by simulations in the isoconfigurational ensemble
,”
J. Chem. Phys.
153
(
23
),
234503
(
2020
).
63.
E. Y.
Lin
,
A. L.
Frischknecht
, and
R. A.
Riggleman
, “
Origin of mechanical enhancement in polymer nanoparticle (NP) composites with ultrahigh NP loading
,”
Macromolecules
53
(
8
),
2976
2982
(
2020
).
64.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito
,
2000
).
65.
P.
Kumar
,
L.
Theeyancheri
,
S.
Chaki
, and
R.
Chakrabarti
, “
Transport of probe particles in a polymer network: Effects of probe size, network rigidity and probe–polymer interaction
,”
Soft Matter
15
(
44
),
8992
9002
(
2019
).
66.
B.
Mei
and
K. S.
Schweizer
, “
Activated penetrant dynamics in glass forming liquids: Size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility
,”
Soft Matter
17
(
9
),
2624
2639
(
2021
).
67.
B.
Mei
,
Y.
Lu
,
L.
An
, and
Z.-G.
Wang
, “
Two-step relaxation and the breakdown of the Stokes-Einstein relation in glass-forming liquids
,”
Phys. Rev. E
100
(
5
),
052607
(
2019
).
68.
F. H.
Stillinger
and
J. A.
Hodgdon
, “
Translation-rotation paradox for diffusion in fragile glass-forming liquids
,”
Phys. Rev. E
50
(
3
),
2064
2068
(
1994
).
69.
J. A.
Hodgdon
and
F. H.
Stillinger
, “
Stokes-Einstein violation in glass-forming liquids
,”
Phys. Rev. E
48
(
1
),
207
213
(
1993
).
70.
P.
Kumar
,
S. V.
Buldyrev
,
S. R.
Becker
,
P. H.
Poole
,
F. W.
Starr
, and
H. E.
Stanley
, “
Relation between the Widom line and the breakdown of the Stokes–Einstein relation in supercooled water
,”
Proc. Natl. Acad. Sci.
104
(
23
),
9575
9579
(
2007
).
71.
S. R.
Becker
,
P. H.
Poole
, and
F. W.
Starr
, “
Fractional Stokes-Einstein and Debye-Stokes-Einstein relations in a network-forming liquid
,”
Phys. Rev. Lett.
97
(
5
),
055901
(
2006
).
72.
S. K.
Kumar
,
G.
Szamel
, and
J. F.
Douglas
, “
Nature of the breakdown in the Stokes-Einstein relationship in a hard sphere fluid
,”
J. Chem. Phys.
124
(
21
),
214501
(
2006
).
73.
M. G.
Mazza
,
N.
Giovambattista
,
H. E.
Stanley
, and
F. W.
Starr
, “
Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water
,”
Phys. Rev. E
76
(
3
),
031203
(
2007
).
74.
M. D.
Ediger
, “
Spatially heterogeneous dynamics in supercooled liquids
,”
Annu. Rev. Phys. Chem.
51
(
1
),
99
128
(
2000
).
75.
B.
Mei
,
B.
Zhuang
,
Y.
Lu
,
L.
An
, and
Z.-G.
Wang
, “
Local-average free volume correlates with dynamics in glass formers
,”
J. Phys. Chem. Lett.
13
(
17
),
3957
3964
(
2022
).
76.
L.
Berthier
and
G.
Biroli
, “
Theoretical perspective on the glass transition and amorphous materials
,”
Rev. Mod. Phys.
83
(
2
),
587
645
(
2011
).
77.
S.-J.
Xie
and
K. S.
Schweizer
, “
Microscopic theory of dynamically heterogeneous activated relaxation as the origin of decoupling of segmental and chain relaxation in supercooled polymer melts
,”
Macromolecules
53
(
13
),
5350
5360
(
2020
).
78.
S.-J.
Xie
and
K. S.
Schweizer
, “
A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids
,”
J. Chem. Phys.
152
(
3
),
034502
(
2020
).
79.
H.
Cho
,
H.
Kim
,
B.
Sung
, and
J.
Kim
, “
Tracer diffusion in tightly-meshed homogeneous polymer networks: A Brownian dynamics simulation study
,”
Polymers
12
(
9
),
2067
(
2020
).
80.
A.
Godec
,
M.
Bauer
, and
R.
Metzler
, “
Collective dynamics effect transient subdiffusion of inert tracers in flexible gel networks
,”
New J. Phys.
16
(
9
),
092002
(
2014
).
81.
A. G.
Cherstvy
,
S.
Thapa
,
C. E.
Wagner
, and
R.
Metzler
, “
Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels
,”
Soft Matter
15
(
12
),
2526
2551
(
2019
).
82.
W.
Kob
and
H. C.
Andersen
, “
Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: The van Hove correlation function
,”
Phys. Rev. E
51
(
5
),
4626
4641
(
1995
).
83.
R.
Zhang
and
K. S.
Schweizer
, “
Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions
,”
J. Chem. Phys.
146
(
19
),
194906
(
2017
).
84.
J.
Huang
,
N.
Ramlawi
,
G. S.
Sheridan
,
C.
Chen
,
R. H.
Ewoldt
,
P. V.
Braun
, and
C. M.
Evans
, “
Dynamic covalent bond exchange enhances penetrant diffusion in dense vitrimers
,”
Macromolecules
56
(
3
),
1253
1262
(
2023
).

Supplementary Material

You do not currently have access to this content.