The emergence of new nanoporous materials, based, e.g., on 2D materials, offers new avenues for water filtration and energy. There is, accordingly, a need to investigate the molecular mechanisms at the root of the advanced performances of these systems in terms of nanofluidic and ionic transport. In this work, we introduce a novel unified methodology for Non-Equilibrium classical Molecular Dynamic simulations (NEMD), allowing to apply likewise pressure, chemical potential, and voltage drops across nanoporous membranes and quantifying the resulting observables characterizing confined liquid transport under such external stimuli. We apply the NEMD methodology to study a new type of synthetic Carbon NanoMembranes (CNM), which have recently shown outstanding performances for desalination, keeping high water permeability while maintaining full salt rejection. The high water permeance of CNM, as measured experimentally, is shown to originate in prominent entrance effects associated with negligible friction inside the nanopore. Beyond, our methodology allows us to fully calculate the symmetric transport matrix and the cross-phenomena, such as electro-osmosis, diffusio-osmosis, and streaming currents. In particular, we predict a large diffusio-osmotic current across the CNM pore under a concentration gradient, despite the absence of surface charges. This suggests that CNMs are outstanding candidates as alternative, scalable membranes for osmotic energy harvesting.

1.
H. B.
Park
,
J.
Kamcev
,
L. M.
Robeson
,
M.
Elimelech
, and
B. D.
Freeman
, “
Maximizing the right stuff: The trade-off between membrane permeability and selectivity
,”
Science
356
,
eaab0530
(
2017
).
2.
S.
Faucher
,
N.
Aluru
,
M. Z.
Bazant
,
D.
Blankschtein
,
A. H.
Brozena
,
J.
Cumings
,
J.
Pedro de Souza
,
M.
Elimelech
,
R.
Epsztein
,
J. T.
Fourkas
,
A. G.
Rajan
,
H. J.
Kulik
,
A.
Levy
,
A.
Majumdar
,
C.
Martin
,
M.
McEldrew
,
R. P.
Misra
,
A.
Noy
,
T. A.
Pham
,
M.
Reed
,
E.
Schwegler
,
Z.
Siwy
,
Y.
Wang
, and
M.
Strano
, “
Critical knowledge gaps in mass transport through single-digit nanopores: A review and perspective
,”
J. Phys. Chem. C
123
,
21309
21326
(
2019
).
3.
L.
Bocquet
, “
Nanofluidics coming of age
,”
Nat. Mater.
19
,
254
256
(
2020
).
4.
J. K.
Holt
,
H. G.
Park
,
Y.
Wang
,
M.
Stadermann
,
A. B.
Artyukhin
,
C. P.
Grigoropoulos
,
A.
Noy
, and
O.
Bakajin
, “
Fast mass transport through sub-2-nanometer carbon nanotubes
,”
Science
312
,
1034
1037
(
2006
).
5.
E.
Secchi
,
A.
Niguès
,
L.
Jubin
,
A.
Siria
, and
L.
Bocquet
, “
Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes
,”
Phys. Rev. Lett.
116
,
154501
(
2016
).
6.
R. H.
Tunuguntla
,
R. Y.
Henley
,
Y.-C.
Yao
,
T. A.
Pham
,
M.
Wanunu
, and
A.
Noy
, “
Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins
,”
Science
357
,
792
796
(
2017
).
7.
N.
Kavokine
,
M.-L.
Bocquet
, and
L.
Bocquet
, “
Fluctuation-induced quantum friction in nanoscale water flows
,”
Nature
602
,
84
90
(
2022
).
8.
L.
Wang
,
M. S. H.
Boutilier
,
P. R.
Kidambi
,
D.
Jang
,
N. G.
Hadjiconstantinou
, and
R.
Karnik
, “
Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes
,”
Nat. Nanotechnol.
12
,
509
522
(
2017
).
9.
K.
Celebi
,
J.
Buchheim
,
R. M.
Wyss
,
A.
Droudian
,
P.
Gasser
,
I.
Shorubalko
,
J.-I.
Kye
,
C.
Lee
, and
H. G.
Park
, “
Ultimate permeation across atomically thin porous graphene
,”
Science
344
,
289
292
(
2014
).
10.
J.
Abraham
,
K. S.
Vasu
,
C. D.
Williams
,
K.
Gopinadhan
,
Y.
Su
,
C. T.
Cherian
,
J.
Dix
,
E.
Prestat
,
S. J.
Haigh
,
I. V.
Grigorieva
,
P.
Carbone
,
A. K.
Geim
, and
R. R.
Nair
, “
Tunable sieving of ions using graphene oxide membranes
,”
Nat. Nanotechnol.
12
,
546
550
(
2017
).
11.
P.
Cheng
,
F.
Fornasiero
,
M. L.
Jue
,
W.
Ko
,
A.-P.
Li
,
J. C.
Idrobo
,
M. S. H.
Boutilier
, and
P. R.
Kidambi
, “
Differences in water and vapor transport through angstrom-scale pores in atomically thin membranes
,”
Nat. Commun.
13
,
6709
(
2022
).
12.
Y.
Yang
,
P.
Dementyev
,
N.
Biere
,
D.
Emmrich
,
P.
Stohmann
,
R.
Korzetz
,
X.
Zhang
,
A.
Beyer
,
S.
Koch
,
D.
Anselmetti
, and
A.
Gölzhäuser
, “
Rapid water permeation through carbon nanomembranes with sub-nanometer channels
,”
ACS Nano
12
,
4695
4701
(
2018
).
13.
J.
Goldsmith
and
C. C.
Martens
, “
Pressure-induced water flow through model nanopores
,”
Phys. Chem. Chem. Phys.
11
,
528
533
(
2009
).
14.
H.
Yoshida
,
H.
Mizuno
,
T.
Kinjo
,
H.
Washizu
, and
J.-L.
Barrat
, “
Generic transport coefficients of a confined electrolyte solution
,”
Phys. Rev. E
90
,
052113
(
2014
).
15.
Y.
Zhao
,
Y.
Xie
,
Z.
Liu
,
X.
Wang
,
Y.
Chai
, and
F.
Yan
, “
Two-dimensional material membranes: An emerging platform for controllable mass transport applications
,”
Small
10
,
4521
4542
(
2014
).
16.
E.
Secchi
,
S.
Marbach
,
A.
Niguès
,
D.
Stein
,
A.
Siria
, and
L.
Bocquet
, “
Massive radius-dependent flow slippage in carbon nanotubes
,”
Nature
537
,
210
213
(
2016
).
17.
F.
Zhu
,
E.
Tajkhorshid
, and
K.
Schulten
, “
Pressure-induced water transport in membrane channels studied by molecular dynamics
,”
Biophys. J.
83
,
154
160
(
2002
).
18.
M. E.
Suk
and
N. R.
Aluru
, “
Water transport through ultrathin graphene
,”
J. Phys. Chem. Lett.
1
,
1590
1594
(
2010
).
19.
H.
Yoshida
,
S.
Marbach
, and
L.
Bocquet
, “
Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations
,”
J. Chem. Phys.
146
,
194702
(
2017
).
20.
C.
Sathe
,
X.
Zou
,
J.-P.
Leburton
, and
K.
Schulten
, “
Computational investigation of DNA detection using graphene nanopores
,”
ACS Nano
5
,
8842
8851
(
2011
).
21.
M.
Shen
,
S.
Keten
, and
R. M.
Lueptow
, “
Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations
,”
J. Membr. Sci.
506
,
95
108
(
2016
).
22.
H.-C.
Wu
,
T.
Yoshioka
,
K.
Nakagawa
,
T.
Shintani
, and
H.
Matsuyama
, “
Water transport and ion diffusion investigation of an amphotericin B-based channel applied to forward osmosis: A simulation study
,”
Membranes
11
,
646
(
2021
).
23.
A.
Kalra
,
S.
Garde
, and
G.
Hummer
, “
Osmotic water transport through carbon nanotube membranes
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
10175
10180
(
2003
).
24.
A. V.
Raghunathan
and
N. R.
Aluru
, “
Molecular understanding of osmosis in semipermeable membranes
,”
Phys. Rev. Lett.
97
,
024501
(
2006
).
25.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
26.
G.
Monet
(
2023
).“
GRMOCS: Versatile non equilibrium molecular dynamics methodology to implement flow and fluxes through nanopores
,” Zenodo. https://doi.org/10.5281/zenodo.7642929.
27.
D. M.
York
,
T. A.
Darden
, and
L. G.
Pedersen
, “
The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods
,”
J. Chem. Phys.
99
,
8345
8348
(
1993
).
28.
D. E.
Smith
and
L. X.
Dang
, “
Computer simulations of NaCl association in polarizable water
,”
J. Chem. Phys.
100
,
3757
3766
(
1994
).
29.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
, “
On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
,”
J. Phys. Chem. B
107
,
1345
1352
(
2003
).
30.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
31.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
,
461
466
(
1989
).
32.
J.
Janeček
and
R. R.
Netz
, “
Interfacial water at hydrophobic and hydrophilic surfaces: Depletion versus adsorption
,”
Langmuir
23
,
8417
8429
(
2007
).
33.
D. M.
Huang
,
C.
Sendner
,
D.
Horinek
,
R. R.
Netz
, and
L.
Bocquet
, “
Water slippage versus contact angle: A quasiuniversal relationship
,”
Phys. Rev. Lett.
101
,
226101
(
2008
).
34.
Y.
Yang
,
R.
Hillmann
,
Y.
Qi
,
R.
Korzetz
,
N.
Biere
,
D.
Emmrich
,
M.
Westphal
,
B.
Büker
,
A.
Hütten
,
A.
Beyer
,
D.
Anselmetti
, and
A.
Gölzhäuser
, “
Ultrahigh ionic exclusion through carbon nanomembranes
,”
Adv. Mater.
32
,
1907850
(
2020
).
35.
N.
Kavokine
,
R. R.
Netz
, and
L.
Bocquet
, “
Fluids at the nanoscale: From continuum to subcontinuum transport
,”
Annu. Rev. Fluid Mech.
53
,
377
410
(
2021
).
36.
S. K.
Kannam
,
P. J.
Daivis
, and
B. D.
Todd
, “
Modeling slip and flow enhancement of water in carbon nanotubes
,”
MRS Bull.
42
,
283
288
(
2017
).
37.
A.
Siria
,
M.-L.
Bocquet
, and
L.
Bocquet
, “
New avenues for the large-scale harvesting of blue energy
,”
Nat. Rev. Chem.
1
,
0091
(
2017
).
38.
D. J.
Rankin
,
L.
Bocquet
, and
D. M.
Huang
, “
Entrance effects in concentration-gradient-driven flow through an ultrathin porous membrane
,”
J. Chem. Phys.
151
,
044705
(
2019
).
39.
R. A.
Robinson
and
R. H.
Stokes
,
Electrolyte Solutions
(
Butterworths
,
London, U.K.
,
1959
).
40.
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
,
89th ed.
, edited by
D. R.
Lide
(
CRC Press
,
Boca Raton, FL
,
2008
).
41.
L.
Onsager
, “
Reciprocal relations in irreversible processes. I.
,”
Phys. Rev.
37
,
405
426
(
1931
).
42.
S. R.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
, edited by
S. R.
de Groot
and
P.
Mazur
(
North-Holland
,
Amsterdam
,
1969
).
43.
A.
Siria
,
P.
Poncharal
,
A.-L.
Biance
,
R.
Fulcrand
,
X.
Blase
,
S. T.
Purcell
, and
L.
Bocquet
, “
Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube
,”
Nature
494
,
455
458
(
2013
).
44.
J.
Feng
,
M.
Graf
,
K.
Liu
,
D.
Ovchinnikov
,
D.
Dumcenco
,
M.
Heiranian
,
V.
Nandigana
,
N. R.
Aluru
,
A.
Kis
, and
A.
Radenovic
, “
Single-layer MoS2 nanopores as nanopower generators
,”
Nature
536
,
197
200
(
2016
).
45.
K.
Ritos
,
D.
Mattia
,
F.
Calabrò
, and
J. M.
Reese
, “
Flow enhancement in nanotubes of different materials and lengths
,”
J. Chem. Phys.
140
,
014702
(
2014
).
You do not currently have access to this content.