The ion–molecule reaction is one of the most important pathways for the formation of new interstellar chemical species. Herein, infrared spectra of cationic binary clusters of acrylonitrile (AN) with methanethiol (CH3SH) and dimethyl sulfide (CH3SCH3) are measured and compared to those previous studies of AN and methanol (CH3OH) or dimethyl ether (CH3OCH3). The results suggest that the ion–molecular reactions of AN with CH3SH and CH3SCH3 only yield products with S…HN H-bonded or S∴N hemibond structures, rather than the cyclic products as observed in AN-CH3OH and AN-CH3OCH3 studied previously. The Michael addition-cyclization reaction between acrylonitrile and sulfur-containing molecules does not occur due to the weaker acidity of CH bonds in sulfur-containing molecules, which results from their weaker hyperconjugation effect compared to oxygen-containing molecules. The reduced propensity for the proton transfer from the CH bonds hinders the formation of the Michael addition-cyclization product that follows.

1.
S.
Zeng
,
I.
Jiménez-Serra
,
V. M.
Rivilla
,
S.
Martín
,
J.
Martín-Pintado
,
M. A.
Requena-Torres
,
J.
Armijos-Abendaño
,
D.
Riquelme
, and
R.
Aladro
, “
Complex organic molecules in the galactic centre: The N-bearing family
,”
Mon. Not. R. Astron. Soc.
478
,
2962
2975
(
2018
).
2.
S.
Cuadrado
,
J. R.
Goicoechea
,
J.
Cernicharo
,
A.
Fuente
,
J.
Pety
, and
B.
Tercero
, “
Complex organic molecules in strongly UV-irradiated gas
,”
Astron. Astrophys.
603
,
A124
(
2017
).
3.
E.
Herbst
and
E. F.
van Dishoeck
, “
Complex organic interstellar molecules
,”
Annu. Rev. Astron. Astrophys.
47
,
427
480
(
2009
).
4.
E.
Herbst
, “
The synthesis of large interstellar molecules
,”
Int. Rev. Phys. Chem.
36
,
287
331
(
2017
).
5.
J. K.
Jørgensen
,
A.
Belloche
, and
R. T.
Garrod
, “
Astrochemistry during the formation of stars
,”
Annu. Rev. Astron. Astrophys.
58
,
727
778
(
2020
).
6.
M.
Guélin
and
J.
Cernicharo
, “
Organic molecules in interstellar space: Latest advances
,”
Front. Astron. Space Sci.
9
,
787567
(
2022
).
7.
W. M. C.
Sameera
,
B.
Senevirathne
,
T.
Nguyen
,
Y.
Oba
,
A.
Ishibashi
,
M.
Tsuge
,
H.
Hidaka
, and
N.
Watanabe
, “
Modelling the radical chemistry on ice surfaces: An integrated quantum chemical and experimental approach
,”
Front. Astron. Space Sci.
9
,
890161
(
2022
).
8.
A. M.
Turner
and
R. I.
Kaiser
, “
Exploiting photoionization reflectron time-of-flight mass spectrometry to explore molecular mass growth processes to complex organic molecules in interstellar and solar system ice analogs
,”
Acc. Chem. Res.
53
,
2791
2805
(
2020
).
9.
E.
Reizer
,
B.
Viskolcz
, and
B.
Fiser
, “
Formation and growth mechanisms of polycyclic aromatic hydrocarbons: A mini-review
,”
Chemosphere
291
,
132793
(
2022
).
10.
C.
Puzzarini
,
Z.
Salta
,
N.
Tasinato
,
J.
Lupi
,
C.
Cavallotti
, and
V.
Barone
, “
A twist on the reaction of the CN radical with methylamine in the interstellar medium: New hints from a state-of-the-art quantum-chemical study
,”
Mon. Not. R. Astron. Soc.
496
,
4298
4310
(
2020
).
11.
J.
Meyer
and
R.
Wester
, “
Ion–molecule reaction dynamics
,”
Annu. Rev. Phys. Chem.
68
,
333
353
(
2017
).
12.
Z.
Yang
and
N.
Pan
, “
Computational studies of ion–neutral reactions of astrochemical relevance: Formation of hydrogen peroxide, acetamide, and amino acetonitrile
,”
Int. J. Mass Spectrom.
378
,
364
368
(
2015
).
13.
M.
Larsson
,
W. D.
Geppert
, and
G.
Nyman
, “
Ion chemistry in space
,”
Rep. Prog. Phys.
75
,
066901
(
2012
).
14.
C. R.
Arumainayagam
,
R. T.
Garrod
,
M. C.
Boyer
,
A. K.
Hay
,
S. T.
Bao
,
J. S.
Campbell
,
J.
Wang
,
C. M.
Nowak
,
M. R.
Arumainayagam
, and
P. J.
Hodge
, “
Extraterrestrial prebiotic molecules: Photochemistry vs. radiation chemistry of interstellar ices
,”
Chem. Soc. Rev.
48
,
2293
2314
(
2019
).
15.
W.
Klemperer
, “
Astronomical chemistry
,”
Annu. Rev. Phys. Chem.
62
,
173
184
(
2011
).
16.
E.
Carrascosa
,
J.
Meyer
and
R.
Wester
, “
Imaging the dynamics of ion–molecule reactions
,”
Chem. Soc. Rev.
46
,
7498
7516
(
2017
).
17.
P.
Redondo
,
C.
Barrientos
, and
A.
Largo
, “
Some insights into formamide formation through gas-phase reactions in the interstellar medium
,”
Astrophys. J.
780
,
181
(
2013
).
18.
A.-R.
Soliman
,
A. M.
Hamid
,
I.
Attah
,
P.
Momoh
, and
M. S.
El-Shall
, “
Formation of nitrogen-containing polycyclic cations by gas-phase and intracluster reactions of acetylene with the pyridinium and pyrimidinium ions
,”
J. Am. Chem. Soc.
135
,
155
166
(
2013
).
19.
I. K.
Attah
,
A.-R.
Soliman
,
S. P.
Platt
,
M.
Meot-Ner
,
S. G.
Aziz
, and
M.
Samy El-Shall
, “
Observation of covalent and electrostatic bonds in nitrogen-containing polycyclic ions formed by gas phase reactions of the benzene radical cation with pyrimidine
,”
Phys. Chem. Chem. Phys.
19
,
6422
6432
(
2017
).
20.
J. C.
Choe
, “
Isomerization and dissociation of the acetonitrile molecular cation
,”
Int. J. Mass Spectrom.
235
,
15
23
(
2004
).
21.
H. B. A.
Cerqueira
,
J. C.
Santos
,
F.
Fantuzzi
,
F. d. A.
Ribeiro
,
M. L. M.
Rocco
,
R. R.
Oliveira
, and
A. B.
Rocha
, “
Structure, stability, and spectroscopic properties of small acetonitrile cation clusters
,”
J. Phys. Chem. A
124
,
6845
6855
(
2020
).
22.
O. J.
Shiels
,
P. D.
Kelly
,
C. C.
Bright
,
B. L. J.
Poad
,
S. J.
Blanksby
,
G.
da Silva
, and
A. J.
Trevitt
, “
Reactivity trends in the gas-phase addition of acetylene to the N-protonated aryl radical cations of pyridine, aniline, and benzonitrile
,”
J. Am. Soc. Mass Spectrom.
32
,
537
547
(
2021
).
23.
F.
Sun
,
M.
Xie
,
Y.
Zhang
,
W.
Song
,
X.
Sun
, and
Y.
Hu
, “
Spectroscopic evidence of the C–N covalent bond formed between two interstellar molecules (ISM): Acrylonitrile and ammonia
,”
Phys. Chem. Chem. Phys.
23
,
9672
9678
(
2021
).
24.
M.
Xie
,
X.
Sun
,
W.
Li
,
J.
Guan
,
Z.
Liang
, and
Y.
Hu
, “
A facile route for the formation of complex nitrogen-containing prebiotic molecules in the interstellar medium
,”
J. Phys. Chem. Lett.
13
,
8207
8213
(
2022
).
25.
K. R.
Olson
, “
The biological legacy of sulfur: A roadmap to the future
,”
Comp. Biochem. Physiol. A Mol. Integr. Physiol.
252
,
110824
(
2021
).
26.
A.
Neubeck
and
F.
Freund
, “
Sulfur chemistry may have paved the way for evolution of antioxidants
,”
Astrobiology
20
,
670
675
(
2020
).
27.
E.
Mukwevho
,
Z.
Ferreira
, and
A.
Ayeleso
, “
Potential role of sulfur-containing antioxidant systems in highly oxidative environments
,”
Molecules
19
,
19376
19389
(
2014
).
28.
L. F.
Rodríguez-Almeida
,
I.
Jiménez-Serra
,
V. M.
Rivilla
,
J.
Martín-Pintado
,
S.
Zeng
,
B.
Tercero
,
P.
Vicente
,
L.
Colzi
,
F.
Rico-Villas
,
S.
Martín
, and
M. A.
Requena-Torres
, “
Thiols in the interstellar medium: First detection of HC(O)SH and confirmation of C2H5SH
,”
Astrophys. J. Lett.
912
,
L11
(
2021
).
29.
P.
Gorai
,
A.
Das
,
A.
Das
,
B.
Sivaraman
,
E. E.
Etim
, and
S. K.
Chakrabarti
, “
A search for interstellar monohydric thiols
,”
Astrophys. J. Lett.
836
,
70
(
2017
).
30.
W. J.
Morgan
,
X.
Huang
,
H. F.
Schaefer
III
, and
T. J.
Lee
, “
Astrophysical sulfur in diffuse and dark clouds: The fundamental vibrational frequencies and spectroscopic constants of hydrogen sulfide cation (H2S+)
,”
Mon. Not. R. Astron. Soc.
480
,
3483
3490
(
2018
).
31.
K.
Grzechnik
,
K.
Rutkowski
, and
Z.
Mielke
, “
The S–H⋯N versus O–H⋯N hydrogen bonding in the ammonia complexes with CH3OH and CH3SH
,”
J. Mol. Struct.
1009
,
96
102
(
2012
).
32.
K.
Gopalsamy
,
S.
Thripati
, and
R. O.
Ramabhadran
, “
Weak interactions in interstellar chemistry: How do open shell molecules interact with closed shell molecules?
,”
ACS Earth Space Chem.
3
,
1080
1095
(
2019
).
33.
W.
Wu
,
Y.
Zeng
,
X.
Li
,
X.
Zhang
,
S.
Zheng
, and
L.
Meng
, “
Interplay between halogen bonds and hydrogen bonds in OH/SH···HOX···HY (X = Cl, Br; Y = F, Cl, Br) complexes
,”
J. Mol. Model.
19
,
1069
1077
(
2013
).
34.
H. S.
Biswal
and
S.
Wategaonkar
, “
OH···X (X = O, S) hydrogen bonding in thetrahydrofuran and tetrahydrothiophene
,”
J. Chem. Phys.
135
,
134306
(
2011
).
35.
H. S.
Biswal
,
P. R.
Shirhatti
, and
S.
Wategaonkar
, “
O-H···O versus O-H···S hydrogen bonding I: Experimental and computational studies on the p-cresol·H2O and p-cresol·H2S complexes
,”
J. Phys. Chem. A
113
,
5633
(
2009
).
36.
H. S.
Biswal
,
P. R.
Shirhatti
, and
S.
Wategaonkar
, “
O-H···O versus O-H···S hydrogen bonding. 2. Alcohols and thiols as hydrogen bond acceptors
,”
J. Phys. Chem. A
114
,
6944
(
2010
).
37.
H. S.
Biswal
and
S.
Wategaonkar
, “
O-H···O versus O-H···S hydrogen bonding. 3. IR−UV double resonance study of hydrogen bonded complexes of p-cresol with diethyl ether and its sulfur analog
,”
J. Phys. Chem. A
114
,
5947
(
2010
).
38.
Y.
Li
,
X.
Liu
,
X.
Wang
, and
N.
Lou
, “
Proton transfer reactions within the NH3·CH3OH+ cluster
,”
Chem. Phys. Lett.
276
,
339
345
(
1997
).
39.
X.
Sun
,
M.
Xie
,
W.
Qiu
,
C.
Wei
,
X.
Chen
, and
Y.
Hu
, “
Spectroscopic evidence of S∴N and S∴O hemibonds in heterodimer cations
,”
Phys. Chem. Chem. Phys.
24
,
19354
19361
(
2022
).
40.
L.
Fu
,
H.-L.
Han
, and
Y.-P.
Lee
, “
Infrared absorption of methanethiol clusters (CH3SH)n, n=2−5, recorded with a time-of-flight mass spectrometer using IR depletion and VUV ionization
,”
J. Chem. Phys.
137
,
234307
(
2012
).
41.
J.-Y.
Feng
,
Y.-P.
Lee
,
H. A.
Witek
, and
T.
Ebata
, “
Vacuum ultraviolet photoionization induced proton migration and formation of a new C-N bond in pyridine clusters revealed by infrared spectroscopy and mass spectrometry
,”
J. Phys. Chem. Lett.
12
,
4936
4943
(
2021
).
42.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
et al,
Gaussian 16, Revision B.01
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
43.
K.
Ohno
and
S.
Maeda
, “
A scaled hypersphere search method for the topography of reaction pathways on the potential energy surface
,”
Chem. Phys. Lett.
384
,
277
282
(
2004
).
44.
S.
Maeda
and
K.
Ohno
, “
Global mapping of equilibrium and transition structures on potential energy surfaces by the scaled hypersphere search method: Applications to ab initio surfaces of formaldehyde and propyne molecules
,”
J. Phys. Chem. A
109
,
5742
5753
(
2005
).
45.
K.
Ohno
and
S.
Maeda
, “
Global reaction route mapping on potential energy surfaces of formaldehyde, formic acid, and their metal-substituted analogues
,”
J. Phys. Chem. A
110
,
8933
8941
(
2006
).
46.
T.
Lu
and
F.
Chen
, “
Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2, (N2)2, and (H2)(N2)
,”
J. Mol. Model.
19
,
5387
5395
(
2013
).
47.
M.
Xie
,
Z.
Shen
,
S. T.
Pratt
, and
Y.-P.
Lee
, “
Vibrational autoionization of state-selective jet-cooled methanethiol (CH3SH) investigated with infrared + vacuum-ultraviolet photoionization
,”
Phys. Chem. Chem. Phys.
19
,
29153
29161
(
2017
).
48.
M.
Xie
,
H.-R.
Tsai
,
A.
Fujii
, and
Y.-P.
Lee
, “
Effects of solvent molecules on hemi-bonded (CH3SH)2+: Infrared absorption of [(CH3SH)2–X]+ with X = H2O, (CH3)2CO, or NH3 and (CH3SH)n+ (n = 3–6)
,”
Phys. Chem. Chem. Phys.
21
,
16055
16063
(
2019
).
49.
Y.
Li
,
W.
Song
,
N.
Jiang
,
Z.
Zhang
,
M.
Xie
, and
Y.
Hu
, “
Structural rearrangement of the acrylonitrile (AN) cluster in the gas phase under VUV one-photon radiation explored by mass-selected infrared spectroscopy
,”
Spectrochim. Acta, Part A
226
,
117620
(
2020
).
50.
S.
Nourbakhsh
,
K.
Norwood
,
H. M.
Yin
,
C. L.
Liao
, and
C. Y.
Ng
, “
Vacuum ultraviolet photodissociation and photoionization studies of CH3SH and SH
,”
J. Chem. Phys.
95
,
946
954
(
1991
).
51.
H.
Kruse
,
L.
Goerigk
, and
S.
Grimme
, “
Why the standard B3LYP/6-31g* model chemistry should not Be used in DFT calculations of molecular thermochemistry: Understanding and correcting the problem
,”
J. Org. Chem.
77
,
10824
10834
(
2012
).
52.
S.
Grimme
and
M.
Steinmetz
, “
Effects of London dispersion correction in density functional theory on the structures of organic molecules in the gas phase
,”
Phys. Chem. Chem. Phys.
15
,
16031
16042
(
2013
).
53.
R.
Sure
and
S.
Grimme
, “
Comprehensive benchmark of association (free) energies of realistic host–guest complexes
,”
J. Chem. Theory Comput.
11
,
3785
3801
(
2015
).
54.
M. M.
Heravi
and
P.
Hajiabbasi
, “
Recent advances in C-heteroatom bond forming by asymmetric Michael addition
,”
Mol. Diversity
18
,
411
439
(
2014
).
55.
D. P.
Nair
,
M.
Podgórski
,
S.
Chatani
,
T.
Gong
,
W.
Xi
,
C. R.
Fenoli
, and
C. N.
Bowman
, “
The Thiol-Michael addition click reaction: A powerful and widely used tool in materials chemistry
,”
Chem. Mater.
26
,
724
744
(
2014
).

Supplementary Material

You do not currently have access to this content.