Electron transfer at electrode interfaces to molecules in solution or at the electrode surface plays a vital role in numerous technological processes. However, treating these processes requires a unified and accurate treatment of the fermionic states of the electrode and their coupling to the molecule being oxidized or reduced in the electrochemical processes and, in turn, the way the molecular energy levels are modulated by the bosonic nuclear modes of the molecule and solvent. Here we present a physically transparent quasiclassical scheme to treat these electrochemical electron transfer processes in the presence of molecular vibrations by using an appropriately chosen mapping of the fermionic variables. We demonstrate that this approach, which is exact in the limit of non-interacting fermions in the absence of coupling to vibrations, is able to accurately capture the electron transfer dynamics from the electrode even when the process is coupled to vibrational motions in the regimes of weak coupling. This approach, thus, provides a scalable strategy to explicitly treat electron transfer from electrode interfaces in condensed-phase molecular systems.

1.
N.
Shenvi
,
S.
Roy
, and
J. C.
Tully
,
J. Chem. Phys.
130
,
174107
(
2009
).
2.
N.
Shenvi
,
S.
Roy
, and
J. C.
Tully
,
Science
326
,
829
(
2009
).
3.
J.
Gardner
,
D.
Corken
,
S. M.
Janke
,
S.
Habershon
, and
R. J.
Maurer
,
J. Chem. Phys.
158
,
064101
(
2023
).
4.
W.
Dou
,
A.
Nitzan
, and
J. E.
Subotnik
,
J. Chem. Phys.
142
,
084110
(
2015
).
5.
W.
Dou
,
A.
Nitzan
, and
J. E.
Subotnik
,
J. Chem. Phys.
142
,
234106
(
2015
).
6.
W.
Dou
,
A.
Nitzan
, and
J. E.
Subotnik
,
J. Chem. Phys.
144
,
074109
(
2016
).
7.
A. J.
Coffman
and
J. E.
Subotnik
,
Phys. Chem. Chem. Phys.
20
,
9847
(
2018
).
8.
A. J.
Coffman
,
A. K.
Harshan
,
S.
Hammes-Schiffer
, and
J. E.
Subotnik
,
J. Phys. Chem. C
123
,
13304
(
2019
).
9.
A. J.
Coffman
,
W.
Dou
,
S.
Hammes-Schiffer
, and
J. E.
Subotnik
,
J. Chem. Phys.
152
,
234108
(
2020
).
10.
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
103
,
10137
(
1995
).
11.
W.
Dou
,
G.
Miao
, and
J. E.
Subotnik
,
Phys. Rev. Lett.
119
,
046001
(
2017
).
12.
W.
Dou
, “
Modeling nonadiabatic dynamics at molecule-metal interfaces
,” Ph.D. thesis,
University of Pennsylvania
,
2018
.
13.
B.
Li
and
W. H.
Miller
,
J. Chem. Phys.
137
,
154107
(
2012
).
14.
B.
Li
,
T. J.
Levy
,
D. W. H.
Swenson
,
E.
Rabani
, and
W. H.
Miller
,
J. Chem. Phys.
138
,
104110
(
2013
).
15.
B.
Li
,
E. Y.
Wilner
,
M.
Thoss
,
E.
Rabani
, and
W. H.
Miller
,
J. Chem. Phys.
140
,
104110
(
2014
).
16.
A.
Levy
,
W.
Dou
,
E.
Rabani
, and
D. T.
Limmer
,
J. Chem. Phys.
150
,
234112
(
2019
).
17.
J.
Sun
,
S.
Sasmal
, and
O.
Vendrell
,
J. Chem. Phys.
155
,
134110
(
2021
).
18.
A.
Montoya-Castillo
and
T. E.
Markland
,
J. Chem. Phys.
158
,
094112
(
2023
).
19.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
72
,
2272
(
1980
).
20.
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
(
1997
).
21.
I.
Navrotskaya
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
131
,
024112
(
2009
).
23.
A.
Erpenbeck
,
C.
Schinabeck
,
U.
Peskin
, and
M.
Thoss
,
Phys. Rev. B
97
,
235452
(
2018
).
24.
R. J.
Cave
and
M. D.
Newton
,
Chem. Phys. Lett.
249
,
15
(
1996
).
25.
K.
Senthilkumar
,
F. C.
Grozema
,
F. M.
Bickelhaupt
, and
L. D. A.
Siebbeles
,
J. Chem. Phys.
119
,
9809
(
2003
).
26.
I.
Kondov
,
M.
Čížek
,
C.
Benesch
,
H.
Wang
, and
M.
Thoss
,
J. Phys. Chem. C
111
,
11970
(
2007
).
27.
S.
Difley
and
T.
Van Voorhis
,
J. Chem. Theory Comput.
7
,
594
(
2011
).
28.
H.
Oberhofer
and
J.
Blumberger
,
Phys. Chem. Chem. Phys.
14
,
13846
(
2012
).
29.
Y.
Mao
,
A.
Montoya-Castillo
, and
T. E.
Markland
,
J. Chem. Phys.
151
,
164114
(
2019
).
30.
Y.
Mao
,
A.
Montoya-Castillo
, and
T. E.
Markland
,
J. Chem. Phys.
153
,
244111
(
2020
).
31.
A. A.
Golosov
and
D. R.
Reichman
,
J. Chem. Phys.
114
,
1065
(
2001
).
32.
S. J.
Cotton
and
W. H.
Miller
,
J. Chem. Phys.
139
,
234112
(
2013
).
33.
X.
He
,
Z.
Gong
,
B.
Wu
, and
J.
Liu
,
J. Phys. Chem. Lett.
12
,
2496
(
2021
).
34.
J. E.
Runeson
and
J. O.
Richardson
,
J. Chem. Phys.
151
,
044119
(
2019
).
35.
36.
37.
H.
Bruus
and
K.
Flensberg
,
Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford Graduate Texts)
,
Hardcover ed.
(
Oxford University Press
,
2004
), p.
435
.
38.
G.
Stefanucci
and
R.
van Leeuwen
,
Nonequilibrium Many-Body Theory of Quantum Systems
(
Cambridge University Press
,
Cambridge, England
,
2013
).
39.
N.
Bellonzi
,
A.
Jain
, and
J. E.
Subotnik
,
J. Chem. Phys.
144
,
154110
(
2016
).
40.
A.
Jain
and
J. E.
Subotnik
,
J. Phys. Chem. A
122
,
16
(
2017
).
41.
J. R.
Schmidt
,
P. V.
Parandekar
, and
J. C.
Tully
,
J. Chem. Phys.
129
,
044104
(
2008
).

Supplementary Material

You do not currently have access to this content.