The intermediate state representation (ISR) formalism allows for the straightforward calculation of excited state properties and state-to-state transition moments using the algebraic-diagrammatic construction (ADC) scheme for the polarization propagator. Here, the derivation and implementation of the ISR in third-order perturbation theory for the one-particle operator are presented, enabling, for the first time, the calculation of consistent third-order ADC [ADC(3)] properties. The accuracy of ADC(3) properties is evaluated with respect to high-level reference data and compared to the previously used ADC(2) and ADC(3/2) schemes. Oscillator strengths and excited state dipole moments are computed, and typical response properties are considered: dipole polarizabilities, first-order hyperpolarizabilities, and two-photon absorption strengths. The consistent third-order treatment of the ISR leads to an accuracy similar to that of the mixed-order ADC(3/2) method; the individual performance, however, depends on the property and molecule under investigation. ADC(3) produces slightly improved results in the case of oscillator strengths and two-photon absorption strengths, while excited state dipole moments, dipole polarizabilities, and first-order hyperpolarizabilities exhibit similar accuracy at ADC(3) and ADC(3/2) levels. Taking the significant increase of central processing unit time and memory requirements of the consistent ADC(3) approach into account, the mixed-order ADC(3/2) scheme offers a better compromise between accuracy and efficiency for the properties considered.

1.
A.
Dreuw
and
M.
Wormit
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
82
(
2015
).
2.
J.
Schirmer
,
Many-Body Methods for Atoms, Molecules and Clusters
,
Lecture Notes in Chemistry Vol. 94
(
Springer
,
Cham
,
2018
).
3.
A.
Dreuw
, “
The algebraic-diagrammatic construction scheme for the polarization propagator
,” in
Quantum Chemistry and Dynamics of Excited States
, edited by
L.
Gonzalez
and
R.
Lindh
(
John Wiley & Sons, Ltd.
,
2020
), Chap. 5, pp.
109
131
.
5.
P. H. P.
Harbach
,
M.
Wormit
, and
A.
Dreuw
,
J. Chem. Phys.
141
,
064113
(
2014
).
6.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
,
J. Chem. Phys.
117
,
6402
(
2002
).
7.
A. B.
Trofimov
and
J.
Schirmer
,
J. Phys. B: At., Mol. Opt. Phys.
28
,
2299
(
1995
).
8.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
,
J. Chem. Phys.
111
,
9982
(
1999
).
9.
J.
Leitner
,
A. L.
Dempwolff
, and
A.
Dreuw
,
J. Chem. Phys.
157
,
184101
(
2022
).
10.
J.
Schirmer
and
A. B.
Trofimov
,
J. Chem. Phys.
120
,
11449
(
2004
).
12.
F.
Mertins
and
J.
Schirmer
,
Phys. Rev. A
53
,
2140
(
1996
).
13.
M.
Hodecker
,
D. R.
Rehn
,
A.
Dreuw
, and
S.
Höfener
,
J. Chem. Phys.
150
,
164125
(
2019
).
14.
A. B.
Trofimov
,
I. L.
Krivdina
,
J.
Weller
, and
J.
Schirmer
,
Chem. Phys.
329
,
1
(
2006
).
15.
S.
Knippenberg
,
D. R.
Rehn
,
M.
Wormit
,
J. H.
Starcke
,
I. L.
Rusakova
,
A. B.
Trofimov
, and
A.
Dreuw
,
J. Chem. Phys.
136
,
064107
(
2012
).
16.
M.
Scheurer
,
T.
Fransson
,
P.
Norman
,
A.
Dreuw
, and
D. R.
Rehn
,
J. Chem. Phys.
153
,
074112
(
2020
).
17.
M.
Scott
,
D. R.
Rehn
,
S.
Coriani
,
P.
Norman
, and
A.
Dreuw
,
J. Chem. Phys.
154
,
064107
(
2021
).
18.
M.
Bauer
,
A. L.
Dempwolff
,
D. R.
Rehn
, and
A.
Dreuw
,
J. Chem. Phys.
156
,
144101
(
2022
).
19.
M.
Wormit
,
D. R.
Rehn
,
P. H. P.
Harbach
,
J.
Wenzel
,
C. M.
Krauter
,
E.
Epifanovsky
, and
A.
Dreuw
,
Mol. Phys.
112
,
774
(
2014
).
20.
O.
Christiansen
,
J.
Gauss
, and
J. F.
Stanton
,
Chem. Phys. Lett.
305
,
147
(
1999
).
21.
M. J.
Paterson
,
O.
Christiansen
,
F.
Pawłowski
,
P.
Jørgensen
,
C.
Hättig
,
T.
Helgaker
, and
P.
Sałek
,
J. Chem. Phys.
124
,
054322
(
2006
).
22.
A.
Chrayteh
,
A.
Blondel
,
P.-F.
Loos
, and
D.
Jacquemin
,
J. Chem. Theory Comput.
17
,
416
(
2021
).
23.
P.-F.
Loos
,
F.
Lipparini
,
M.
Boggio-Pasqua
,
A.
Scemama
, and
D.
Jacquemin
,
J. Chem. Theory Comput.
16
,
1711
(
2020
).
24.
P.-F.
Loos
,
A.
Scemama
,
A.
Blondel
,
Y.
Garniron
,
M.
Caffarel
, and
D.
Jacquemin
,
J. Chem. Theory Comput.
14
,
4360
(
2018
).
25.
H.
Larsen
,
J.
Olsen
,
C.
Hättig
,
P.
Jørgensen
,
O.
Christiansen
, and
J.
Gauss
,
J. Chem. Phys.
111
,
1917
(
1999
).
26.
T.
Fransson
,
D. R.
Rehn
,
A.
Dreuw
, and
P.
Norman
,
J. Chem. Phys.
146
,
094301
(
2017
).
27.
A. J.
Thakkar
,
Z. Phys. Chem.
230
,
633
(
2016
).
28.
M. F.
Herbst
,
M.
Scheurer
,
T.
Fransson
,
D. R.
Rehn
, and
A.
Dreuw
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1462
(
2020
).
29.
D. R.
Rehn
,
Z.
Rinkevicius
,
M. F.
Herbst
,
X.
Li
,
M.
Scheurer
,
M.
Brand
,
A. L.
Dempwolff
,
I. E.
Brumboiu
,
T.
Fransson
,
A.
Dreuw
, and
P.
Norman
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1528
(
2021
).
30.
J. M.
Turney
,
A. C.
Simmonett
,
R. M.
Parrish
,
E. G.
Hohenstein
,
F. A.
Evangelista
,
J. T.
Fermann
,
B. J.
Mintz
,
L. A.
Burns
,
J. J.
Wilke
,
M. L.
Abrams
,
N. J.
Russ
,
M. L.
Leininger
,
C. L.
Janssen
,
E. T.
Seidl
,
W. D.
Allen
,
H. F.
Schaefer
,
R. A.
King
,
E. F.
Valeev
,
C. D.
Sherrill
, and
T. D.
Crawford
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
556
(
2012
).
31.
A.
Papapostolou
,
M.
Scheurer
,
D. R.
Rehn
, and
A.
Dreuw
, Responsefun: A Python Package for Calculating Arbitrary Response Functions Using the Algebraic Diagrammatic Construction/Intermediate State Representation (ADC/ISR) Approach,
2023
.
32.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J. W.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Mol. Phys.
113
,
184
(
2015
).
33.
T.
Helgaker
,
Molecular Electronic-Structure Theory
(
Wiley
,
Hoboken
,
2014
).
34.
36.
K.
Raghavachari
,
J. A.
Pople
,
E. S.
Replogle
, and
M.
Head-Gordon
,
J. Phys. Chem.
94
,
5579
(
1990
).

Supplementary Material

You do not currently have access to this content.