Fermi’s golden rule (FGR) serves as the basis for many expressions of spectroscopic observables and quantum transition rates. The utility of FGR has been demonstrated through decades of experimental confirmation. However, there still remain important cases where the evaluation of a FGR rate is ambiguous or ill-defined. Examples are cases where the rate has divergent terms due to the sparsity in the density of final states or time dependent fluctuations of system Hamiltonians. Strictly speaking, assumptions of FGR are no longer valid for such cases. However, it is still possible to define modified FGR rate expressions that are useful as effective rates. The resulting modified FGR rate expressions resolve a long standing ambiguity often encountered in using FGR and offer more reliable ways to model general rate processes. Simple model calculations illustrate the utility and implications of new rate expressions.

1.
P. A. M.
Dirac
,
Proc. R. Soc. A
114
,
243
(
1927
).
2.
E.
Fermi
,
Nuclear Physics
(
University of Chicago Press
,
Chicago
,
1950
).
3.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloe
,
Quantum Mechanics
(
John Wiley & Sons, Inc.
,
New York
,
1970
).
4.
J. J.
Sakurai
,
Modern Quantum Mechanics
(
The Benjamin; Cummings Publishing Company, Inc.
,
Menlo Park, CA
,
1985
).
5.
G. C.
Schatz
and
M. A.
Ratner
,
Quantum Mechanics in Chemistry
(
Dover Publications, Inc.
,
Mineola, NY
,
2002
).
6.
S.
Mukamel
,
Principles of Nonlinear Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
7.
J. A.
Cina
,
Getting Started on Time-Resolved Molecular Spectroscopy
(
Oxford University Press
,
Oxford
,
2022
).
8.
T.
Förster
,
Ann. Phys.
437
,
55
(
1948
).
9.
T.
Förster
,
Modern Quantum Chemistry, Part III
, edited by
O.
Sinanoglu
(
Academic Press
,
New York
,
1965
).
10.
D. L.
Dexter
,
J. Chem. Phys.
21
,
836
(
1953
).
11.
R.
Silbey
,
Annu. Rev. Phys. Chem.
27
,
203
(
1976
).
12.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
13.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1985
).
14.
P.
Siders
and
R. A.
Marcus
,
J. Am. Chem. Soc.
103
,
741
(
1981
).
15.
Y.
Georgievskii
,
C.-P.
Hsu
, and
R. A.
Marcus
,
J. Chem. Phys.
110
,
5307
(
1999
).
16.
V. G.
Levich
and
R. R.
Dogonadze
,
Dokl. Akad. Nauk SSSR
124
,
123
(
1959
).
17.
W.
Schmickler
and
W.
Vielstich
,
Electrochim. Acta
18
,
883
(
1973
).
18.
J.
Jortner
,
J. Chem. Phys.
64
,
4860
(
1976
).
19.
J.
Ulstrup
,
Charge Transfer in Condensed Media
(
Springer
,
Berlin
,
1979
).
20.
S.
Jang
and
M. D.
Newton
,
J. Phys. Chem. B
110
,
18996
(
2006
).
21.
R.
Englman
and
J.
Jortner
,
Mol. Phys.
18
,
145
(
1970
).
22.
S.
Fischer
,
J. Chem. Phys.
53
,
3195
(
1970
).
23.
S. J.
Jang
,
J. Chem. Phys.
155
,
164106
(
2021
).
24.
J.
Jortner
and
M.
Bixon
,
Electron Transfer—from Isolated Molecules to Biomolecules, Vol. 106, Parts 1 and 2
,
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
NewYork
,
1999
).
25.
M. D.
Newton
,
Chem. Rev.
91
,
767
(
1991
).
26.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley VCH
,
Weinheim
,
2011
).
27.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases
(
Oxford University Press
,
Oxford
,
2006
).
28.
E. S.
Medvedev
and
A. A.
Stuchebrukhov
,
J. Chem. Phys.
107
,
3821
(
1997
).
29.
S.
Jang
,
Y.
Jung
, and
R. J.
Silbey
,
Chem. Phys.
275
,
319
(
2002
).
30.
S.
Jang
and
M. D.
Newton
,
J. Chem. Phys.
122
,
024501
(
2005
).
31.
S.
Jang
,
J. Chem. Phys.
127
,
174710
(
2007
).
32.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
,
Phys. Rev. Lett.
92
,
218301
(
2004
).
33.
M. V.
Basilevsky
,
A. V.
Odinokov
,
S. V.
Titov
, and
E. A.
Mitina
,
J. Chem. Phys.
139
,
234102
(
2013
).
34.
D. G.
Evans
and
R. D.
Coalson
,
J. Chem. Phys.
104
,
3598
(
1996
).
35.
X.
Sun
and
E.
Geva
,
J. Chem. Theory Comput.
12
,
2926
(
2016
).
36.
X.
Sun
and
E.
Geva
,
J. Chem. Phys.
144
,
244105
(
2016
).
37.
X.
Sun
and
E.
Geva
,
J. Chem. Phys.
145
,
064109
(
2016
).
38.
S.
Jang
,
S.
Hoyer
,
G.
Fleming
, and
K. B.
Whaley
,
Phys. Rev. Lett.
113
,
188102
(
2014
).
39.
Q.
Peng
,
Y.
Yi
,
Z.
Shuai
, and
J.
Shao
,
J. Chem. Phys.
126
,
114302
(
2007
).
40.
M.
Etinski
,
J.
Tatchen
, and
C. M.
Marian
,
J. Chem. Phys.
134
,
154105
(
2011
).
41.
Y.
Niu
,
Q.
Peng
, and
Z.
Shuai
,
Sci. China Ser. B
51
,
1153
(
2008
).
42.
Y.
Niu
et al,
J. Phys. Chem. A
114
,
7817
(
2010
).
43.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
,
J. Chem. Phys.
144
,
084114
(
2016
).
44.
I.
Kim
et al,
J. Chem. Theory Comput.
16
,
621
(
2020
).
45.
Y.
Wang
,
J.
Ren
, and
Z.
Shuai
,
J. Chem. Phys.
154
,
214109
(
2020
).
46.
J. R. G.
Breene
,
Theories of Spectral Line Shape
(
John Wiley & Sons, Inc.
,
New York
,
1981
).
47.
S. J.
Jang
,
Dynamics of Molecular Excitons
,
Nanophotonics Series
(
Elsevier
,
Amsterdam
,
2020
).
48.
S.
Jang
,
J.
Cao
, and
R. J.
Silbey
,
J. Phys. Chem. B
106
,
8313
(
2002
).
49.
U.
Weiss
,
Quantum Dissipative Systems
,
Series in Modern Condensed Matter Physics Vol. 2
(
World Scientific
,
Singapore
,
1993
).
50.
K.
Rebane
,
Impurity Spectra of Solids
(
Plenum
,
New York
,
1970
).
51.
D. V.
Matyushov
,
J. Chem. Phys.
122
,
084507
(
2005
).
52.
S.
Jang
,
J. Chem. Phys.
131
,
164101
(
2009
).
53.
S.
Jang
,
J. Chem. Phys.
135
,
034105
(
2011
).
54.
S.
Jang
,
T. C.
Berkelbach
, and
D. R.
Reichman
,
New J. Phys.
15
,
105020
(
2013
).
55.
I. A.
Balabin
and
J. N.
Onuchic
,
Science
290
,
114
(
2000
).
56.
D. N.
Beratan
et al,
Acc. Chem. Res.
42
,
1669
(
2009
).
57.
D. N.
Beratan
et al,
Acc. Chem. Res.
48
,
474
(
2015
).
58.
S. J.
Jang
and
B.
Mennucci
,
Rev. Mod. Phys.
90
,
035003
(
2018
).
59.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
935
(
1957
).
60.
P. W.
Anderson
,
J. Phys. Soc. Jpn.
9
,
316
(
1954
).
61.
Y.
Jung
,
E.
Barkai
, and
R. J.
Silbey
,
Adv. Chem. Phys.
123
,
199
(
2002
).
62.

The case where Ĵ is periodic in time with angular frequency ω can be included here, within the rotating wave approximation, by replacing EfEi with EfEi ± ℏω, which leads to the standard FGR expressions for spectroscopic transitions.

You do not currently have access to this content.