Pressure-induced perturbation of a protein structure leading to its folding–unfolding mechanism is an important yet not fully understood phenomenon. The key point here is the role of water and its coupling with protein conformations as a function of pressure. In the current work, using extensive molecular dynamics simulation at 298 K, we systematically examine the coupling between protein conformations and water structures of pressures of 0.001, 5, 10, 15, 20 kbar, starting from (partially) unfolded structures of the protein Bovine Pancreatic Trypsin Inhibitor (BPTI). We also calculate localized thermodynamics at those pressures as a function of protein–water distance. Our findings show that both protein-specific and generic effects of pressure are operating. In particular, we found that (1) the amount of increase in water density near the protein depends on the protein structural heterogeneity; (2) the intra-protein hydrogen bond decreases with pressure, while the water–water hydrogen bond per water in the first solvation shell (FSS) increases; protein–water hydrogen bonds also found to increase with pressure, (3) with pressure hydrogen bonds of waters in the FSS getting twisted; and (4) water’s tetrahedrality in the FSS decreases with pressure, but it is dependent on the local environment. Thermodynamically, at higher pressure, the structural perturbation of BPTI is due to the pressure–volume work, while the entropy decreases with the increase of pressure due to the higher translational and rotational rigidity of waters in the FSS. The local and subtle effects of pressure, found in this work, are likely to be typical of pressure-induced protein structure perturbation.

1.
K. A.
Dill
, “
Theory for the folding and stability of globular proteins
,”
Biochemistry
24
,
1501
1509
(
1985
).
2.
G.
Panick
,
G. J. A.
Vidugiris
,
R.
Malessa
,
G.
Rapp
,
R.
Winter
, and
C. A.
Royer
, “
Exploring the temperature-pressure phase diagram of staphylococcal nuclease
,”
Biochemistry
38
,
4157
4164
(
1999
).
3.
R.
Ravindra
and
R.
Winter
, “
On the temperature–pressure free-energy landscape of proteins
,”
ChemPhysChem
4
,
359
365
(
2003
).
4.
D. O. V.
Alonso
and
K. A.
Dill
, “
Solvent denaturation and stabilization of globular proteins
,”
Biochemistry
30
,
5974
5985
(
1991
).
5.
B.
Uralcan
,
S. B.
Kim
,
C. E.
Markwalter
,
R. K.
Prud’homme
, and
P. G.
Debenedetti
, “
A computational study of the ionic liquid-induced destabilization of the miniprotein Trp-cage
,”
J. Phys. Chem. B
122
,
5707
5715
(
2018
).
6.
C. A.
Royer
, “
Revisiting volume changes in pressure-induced protein unfolding
,”
Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol.
1595
,
201
209
(
2002
).
7.
J.
Roche
,
J. A.
Caro
,
D. R.
Norberto
,
P.
Barthe
,
C.
Roumestand
,
J. L.
Schlessman
,
A. E.
Garcia
,
B.
García-Moreno E
, and
C. A.
Royer
, “
Cavities determine the pressure unfolding of proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
6945
6950
(
2012
).
8.
T. V.
Chalikian
, “
Driving forces in pressure-induced protein transitions
,” in
Subcellular Biochemistry
(
Springer Netherlands
,
2015
), pp.
41
58
.
9.
J.
Roche
and
C. A.
Royer
, “
Lessons from pressure denaturation of proteins
,”
J. R. Soc., Interface
15
,
20180244
(
2018
).
10.
B.
Uralcan
and
P. G.
Debenedetti
, “
Computational investigation of the effect of pressure on protein stability
,”
J. Phys. Chem. Lett.
10
,
1894
1899
(
2019
).
11.
K. A.
Dill
,
D. O. V.
Alonso
, and
K.
Hutchinson
, “
Thermal stabilities of globular proteins
,”
Biochemistry
28
,
5439
5449
(
1989
).
12.
K. A.
Dill
, “
Dominant forces in protein folding
,”
Biochemistry
29
,
7133
7155
(
1990
).
13.
J. R.
Grigera
and
A. N.
McCarthy
, “
The behavior of the hydrophobic effect under pressure and protein denaturation
,”
Biophys. J.
98
,
1626
1631
(
2010
).
14.
S.
Sarupria
,
T.
Ghosh
,
A. E.
García
, and
S.
Garde
, “
Studying pressure denaturation of a protein by molecular dynamics simulations
,”
Proteins: Struct., Funct., Bioinf.
78
,
1641
1651
(
2010
).
15.
L. M.
Nguyen
and
J.
Roche
, “
High-pressure NMR techniques for the study of protein dynamics, folding and aggregation
,”
J. Magn. Reson.
277
,
179
185
(
2017
).
16.
J. F.
Brandts
,
R. J.
Oliveira
, and
C.
Westort
, “
Thermodynamics of protein denaturation. Effect of pressure on the denaturation on ribonuclease A
,”
Biochemistry
9
,
1038
1047
(
1970
).
17.
X.
Peng
,
J.
Jonas
, and
J. L.
Silva
, “
Molten-globule conformation of arc repressor monomers determined by high-pressure 1h NMR spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
90
,
1776
1780
(
1993
).
18.
A.
Paliwal
,
D.
Asthagiri
,
D. P.
Bossev
, and
M. E.
Paulaitis
, “
Pressure denaturation of staphylococcal nuclease studied by neutron small-angle scattering and molecular simulation
,”
Biophys. J.
87
,
3479
3492
(
2004
).
19.
J.
Wiedersich
,
S.
Köhler
,
A.
Skerra
, and
J.
Friedrich
, “
Temperature and pressure dependence of protein stability: The engineered fluorescein-binding lipocalin FluA shows an elliptic phase diagram
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
5756
5761
(
2008
).
20.
F.
Piccirilli
,
N.
Plotegher
,
M. G.
Ortore
,
I.
Tessari
,
M.
Brucale
,
F.
Spinozzi
,
M.
Beltramini
,
P.
Mariani
,
V.
Militello
,
S.
Lupi
,
A.
Perucchi
, and
L.
Bubacco
, “
High-pressure-driven reversible dissociation of α-synuclein fibrils reveals structural hierarchy
,”
Biophys. J.
113
,
1685
1696
(
2017
).
21.
P. L.
Privalov
,
E. I.
Tiktopulo
,
S. Y.
Venyaminov
,
Y. V.
Griko
,
G. I.
Makhatadze
, and
N. N.
Khechinashvili
, “
Heat capacity and conformation of proteins in the denatured state
,”
J. Mol. Biol.
205
,
737
750
(
1989
).
22.
G.
Hummer
,
S.
Garde
,
A. E.
García
,
M. E.
Paulaitis
, and
L. R.
Pratt
, “
The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
95
,
1552
1555
(
1998
).
23.
T.
Ghosh
,
A. E.
García
, and
S.
Garde
, “
Molecular dynamics simulations of pressure effects on hydrophobic interactions
,”
J. Am. Chem. Soc.
123
,
10997
11003
(
2001
).
24.
T.
Nagae
,
T.
Kawamura
,
L. M. G.
Chavas
,
K.
Niwa
,
M.
Hasegawa
,
C.
Kato
, and
N.
Watanabe
, “
High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
68
,
300
309
(
2012
).
25.
C. R.
Chen
and
G. I.
Makhatadze
, “
Molecular determinant of the effects of hydrostatic pressure on protein folding stability
,”
Nat. Commun.
8
,
14561
(
2017
).
26.
A.
Arsiccio
and
J.-E.
Shea
, “
Pressure unfolding of proteins: New insights into the role of bound water
,”
J. Phys. Chem. B
125
,
8431
8442
(
2021
).
27.
L.
Nisius
and
S.
Grzesiek
, “
Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network
,”
Nat. Chem.
4
,
711
717
(
2012
).
28.
Y. R.
Espinosa
,
E. R.
Caffarena
, and
J. R.
Grigera
, “
The role of hydrophobicity in the cold denaturation of proteins under high pressure: A study on apomyoglobin
,”
J. Chem. Phys.
150
,
075102
(
2019
).
29.
A.
Ben-Naim
, “
Theoretical aspects of pressure and solute denaturation of proteins: A Kirkwood-Buff-theory approach
,”
J. Chem. Phys.
137
,
235102
(
2012
).
30.
A.
Ben-Naim
, (
World Scientific
,
Singapore
,
2013
).
31.
Y.
Harano
and
M.
Kinoshita
, “
Crucial importance of translational entropy of water in pressure denaturation of proteins
,”
J. Chem. Phys.
125
,
024910
(
2006
).
32.
Y.
Harano
and
M.
Kinoshita
, “
On the physics of pressure denaturation of proteins
,”
J. Phys.: Condens. Matter
18
,
L107
(
2006
).
33.
Y.
Harano
,
T.
Yoshidome
, and
M.
Kinoshita
, “
Molecular mechanism of pressure denaturation of proteins
,”
J. Chem. Phys.
129
,
145103
(
2008
).
34.
M.
Kinoshita
, “
A new theoretical approach to biological self-assembly
,”
Biophys. Rev.
5
,
283
293
(
2013
).
35.
H.
Oshima
and
M.
Kinoshita
, “
Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water
,”
J. Chem. Phys.
142
,
145103
(
2015
).
36.
M.
Inoue
,
T.
Hayashi
,
S.
Hikiri
,
M.
Ikeguchi
, and
M.
Kinoshita
, “
Hydration properties of a protein at low and high pressures: Physics of pressure denaturation
,”
J. Chem. Phys.
152
,
065103
(
2020
).
37.
R.
Day
and
A. E.
García
, “
Water penetration in the low and high pressure native states of ubiquitin
,”
Proteins: Struct., Funct., Bioinf.
70
,
1175
1184
(
2008
).
38.
T.
Imai
and
Y.
Sugita
, “
Dynamic correlation between pressure-induced protein structural transition and water penetration
,”
J. Phys. Chem. B
114
,
2281
2286
(
2010
).
39.
M.
Grossman
,
B.
Born
,
M.
Heyden
,
D.
Tworowski
,
G. B.
Fields
,
I.
Sagi
, and
M.
Havenith
, “
Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site
,”
Nat. Struct. Mol. Biol.
18
,
1102
1108
(
2011
).
40.
N. V.
Nucci
,
M. S.
Pometun
, and
A. J.
Wand
, “
Site-resolved measurement of water-protein interactions by solution NMR
,”
Nat. Struct. Mol. Biol.
18
,
245
249
(
2011
).
41.
J. T.
King
and
K. J.
Kubarych
, “
Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy
,”
J. Am. Chem. Soc.
134
,
18705
18712
(
2012
).
42.
M.
Heyden
and
D. J.
Tobias
, “
Spatial dependence of protein-water collective hydrogen-bond dynamics
,”
Phys. Rev. Lett.
111
,
218101
(
2013
).
43.
S.-H.
Chong
and
S.
Ham
, “
Dynamics of hydration water plays a key role in determining the binding thermodynamics of protein complexes
,”
Sci. Rep.
7
,
8744
(
2017
).
44.
N.
Smolin
and
R.
Winter
, “
A molecular dynamics simulation of snase and its hydration shell at high temperature and high pressure
,”
Biochim. Biophys. Acta, Proteins Proteomics
1764
,
522
534
(
2006
).
45.
N.
Smolin
and
R.
Winter
, “
Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: A molecular dynamics computer simulation study
,”
J. Phys. Chem. B
112
,
997
1006
(
2008
).
46.
D.
Russo
,
A.
Laloni
,
A.
Filabozzi
, and
M.
Heyden
, “
Pressure effects on collective density fluctuations in water and protein solutions
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
11410
11415
(
2017
).
47.
V.
Pattni
and
M.
Heyden
, “
Pressure effects on protein hydration water thermodynamics
,”
J. Phys. Chem. B
123
,
6014
6022
(
2019
).
48.
A.
Lerbret
,
A.
Hédoux
,
B.
Annighöfer
, and
M.-C.
Bellissent-Funel
, “
Influence of pressure on the low-frequency vibrational modes of lysozyme and water: A complementary inelastic neutron scattering and molecular dynamics simulation study
,”
Proteins: Struct., Funct., Bioinf.
81
,
326
340
(
2013
).
49.
A. K.
Soper
and
M. A.
Ricci
, “
Structures of high-density and low-density water
,”
Phys. Rev. Lett.
84
,
2881
2884
(
2000
).
50.
O.
Chara
,
A. N.
McCarthy
, and
J. R.
Grigera
, “
Crossover between tetrahedral and hexagonal structures in liquid water
,”
Phys. Lett. A
375
,
572
576
(
2011
).
51.
B.
Fernández del Río
and
A.
Rey
, “
Behavior of proteins under pressure from experimental pressure-dependent structures
,”
J. Phys. Chem. B
125
,
6179
6191
(
2021
).
52.
C. L.
Dias
,
T.
Ala-Nissila
,
M.
Karttunen
,
I.
Vattulainen
, and
M.
Grant
, “
Microscopic mechanism for cold denaturation
,”
Phys. Rev. Lett.
100
,
118101
(
2008
).
53.
V.
Bianco
and
G.
Franzese
, “
Contribution of water to pressure and cold denaturation of proteins
,”
Phys. Rev. Lett.
115
,
108101
(
2015
).
54.
K.
Goossens
,
L.
Smeller
,
J.
Frank
, and
K.
Heremans
, “
Pressure-tuning the conformation of bovine pancreatic trypsin inhibitor studied by Fourier-transform infrared spectroscopy
,”
Eur. J. Biochem.
236
,
254
262
(
1996
).
55.
D. B.
Kitchen
,
L. H.
Reed
, and
R. M.
Levy
, “
Molecular dynamics simulation of solvated protein at high pressure
,”
Biochemistry
31
,
10083
10093
(
1992
).
56.
R. M.
Brunne
and
W. F.
van Gunsteren
, “
Dynamical properties of bovine pancreatic trypsin inhibitor from a molecular dynamics simulation at 5000 atm
,”
FEBS Lett.
323
,
215
217
(
1993
).
57.
B.
Wroblowski
,
J. F.
Díaz
,
K.
Heremans
, and
Y.
Engelborghs
, “
Molecular mechanisms of pressure induced conformational changes in BPTI
,”
Proteins: Struct., Funct., Bioinf.
25
,
446
455
(
1996
).
58.
C. N.
Nguyen
,
T.
Kurtzman Young
, and
M. K.
Gilson
, “
Grid inhomogeneous solvation theory: Hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril
,”
J. Chem. Phys.
137
,
044101
(
2012
).
59.
T.
Lazaridis
, “
Inhomogeneous fluid approach to solvation thermodynamics. 1. Theory
,”
J. Phys. Chem. B
102
,
3531
3541
(
1998
).
60.
A.
Wlodawer
,
J.
Nachman
,
G. L.
Gilliland
,
W.
Gallagher
, and
C.
Woodward
, “
Structure of form iii crystals of bovine pancreatic trypsin inhibitor
,”
J. Mol. Biol.
198
,
469
480
(
1987
).
61.
J. A.
Maier
,
C.
Martinez
,
K.
Kasavajhala
,
L.
Wickstrom
,
K. E.
Hauser
, and
C.
Simmerling
, “
ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB
,”
J. Chem. Theory Comput.
11
,
3696
3713
(
2015
).
62.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
63.
D. A.
Case
,
H. M.
Aktulga
,
K.
Belfon
,
I.
Ben-Shalom
,
S. R.
Brozell
,
D. S.
Cerutti
,
T. E.
Cheatham
 III
,
V. W. D.
Cruzeiro
,
T. A.
Darden
,
R. E.
Duke
 et al,
Amber 2021
(
University of California
,
San Francisco, CA
,
2021
).
64.
J.
Liu
,
D.
Li
, and
X.
Liu
, “
A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat
,”
J. Chem. Phys.
145
,
024103
(
2016
).
65.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
66.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
2017
).
67.
S.
Miyamoto
and
P. A.
Kollman
, “
Settle: An analytical version of the shake and rattle algorithm for rigid water models
,”
J. Comput. Chem.
13
,
952
962
(
1992
).
68.
A. K.
Jaiswal
,
R.
Srivastava
,
P.
Pandey
, and
P.
Bandyopadhyay
, “
Microscopic picture of water-ethylene glycol interaction near a model DNA by computer simulation: Concentration dependence, structure, and localized thermodynamics
,”
PLoS One
13
,
e0206359
(
2018
).
69.
C.
Chieh
, “
The Archimedean truncated octahedron, and packing of geometric units in cubic crystal structures
,”
Acta Crystallogr., Sect. A: Found. Adv.
35
,
946
952
(
1979
).
70.
H.
Li
,
H.
Yamada
, and
K.
Akasaka
, “
Effect of pressure on individual hydrogen bonds in proteins. basic pancreatic trypsin inhibitor
,”
Biochemistry
37
,
1167
1173
(
1998
).
71.
K.
Akasaka
,
H.
Li
,
H.
Yamada
,
R.
Li
,
T.
Thoresen
, and
C. K.
Woodward
, “
Pressure response of protein backbone structure. pressure-induced amide 15N chemical shifts in BPTI
,”
Protein Sci.
8
,
1946
1953
(
1999
).
72.
S.
Neumaier
,
M.
Büttner
,
A.
Bachmann
, and
T.
Kiefhaber
, “
Transition state and ground state properties of the helix–coil transition in peptides deduced from high-pressure studies
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
20988
20993
(
2013
).
73.
C. C. M.
Groot
and
H. J.
Bakker
, “
Proteins take up water before unfolding
,”
J. Phys. Chem. Lett.
7
,
1800
1804
(
2016
).
74.
S. K.
Pal
and
A. H.
Zewail
, “
Dynamics of water in biological recognition
,”
Chem. Rev.
104
,
2099
2124
(
2004
).
75.
B.
Bagchi
,
Water in Biological and Chemical Processes: From Structure and Dynamics to Function
(
Cambridge University Press
,
2013
).
76.
A.
Godec
,
J. C.
Smith
, and
F.
Merzel
, “
Increase of both order and disorder in the first hydration shell with increasing solute polarity
,”
Phys. Rev. Lett.
107
,
267801
(
2011
).
77.
S.
Parui
and
B.
Jana
, “
Pairwise hydrophobicity at low temperature: Appearance of a stable second solvent-separated minimum with possible implication in cold denaturation
,”
J. Phys. Chem. B
121
,
7016
7026
(
2017
).
78.
T.
Hajari
and
S.
Bandyopadhyay
, “
Water structure around hydrophobic amino acid side chain analogs using different water models
,”
J. Chem. Phys.
146
,
225104
(
2017
).
79.
F.
Birch
, “
Finite elastic strain of cubic crystals
,”
Phys. Rev.
71
,
809
824
(
1947
).
80.
V. M.
Dadarlat
and
C. B.
Post
, “
Insights into protein compressibility from molecular dynamics simulations
,”
J. Phys. Chem. B
105
,
715
724
(
2001
).
81.
F.
Persson
and
B.
Halle
, “
Compressibility of the protein-water interface
,”
J. Chem. Phys.
148
,
215102
(
2018
).
82.
C.
Jaccard
, “
P. V. Hobbs ice physics. Oxford, Clarendon Press, 1974. xvii, 837 p.£ 29
,”
J. Glaciol.
17
,
155
156
(
1976
).
83.
H.
Acharya
,
S.
Vembanur
,
S. N.
Jamadagni
, and
S.
Garde
, “
Mapping hydrophobicity at the nanoscale: Applications to heterogeneous surfaces and proteins
,”
Faraday Discuss.
146
,
353
365
(
2010
).
84.
M.
Marchi
, “
Compressibility of cavities and biological water from Voronoi volumes in hydrated proteins
,”
J. Phys. Chem. B
107
,
6598
6602
(
2003
).
85.
G. S.
Kell
, “
Density, thermal expansivity, and compressibility of liquid water from 0.deg. to 150.deg.. correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale
,”
J. Chem. Eng. Data
20
,
97
105
(
1975
).
86.
K.
Nishida
,
Y.
Shibazaki
,
H.
Terasaki
,
Y.
Higo
,
A.
Suzuki
,
N.
Funamori
, and
K.
Hirose
, “
Effect of sulfur on sound velocity of liquid iron under martian core conditions
,”
Nat. Commun.
11
,
1954
(
2020
).
87.
P.-L.
Chau
and
A. J.
Hardwick
, “
A new order parameter for tetrahedral configurations
,”
Mol. Phys.
93
,
511
518
(
1998
).
88.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
321
(
2001
).
89.
G.
Hura
,
J. M.
Sorenson
,
R. M.
Glaeser
, and
T.
Head-Gordon
, “
A high-quality x-ray scattering experiment on liquid water at ambient conditions
,”
J. Chem. Phys.
113
,
9140
9148
(
2000
).
90.
Y.
Katayama
,
T.
Hattori
,
H.
Saitoh
,
T.
Ikeda
,
K.
Aoki
,
H.
Fukui
, and
K.
Funakoshi
, “
Structure of liquid water under high pressure up to 17 GPa
,”
Phys. Rev. B
81
,
014109
(
2010
).
91.
S. K.
Sinha
and
S.
Bandyopadhyay
, “
Differential flexibility of the secondary structures of lysozyme and the structure and ordering of surrounding water molecules
,”
J. Chem. Phys.
134
,
115101
(
2011
).
92.
N.
Muller
, “
Search for a realistic view of hydrophobic effects
,”
Acc. Chem. Res.
23
,
23
28
(
1990
).
93.
H.
Seemann
,
R.
Winter
, and
C. A.
Royer
, “
Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of staphylococcal nuclease11edited by C. R. Mathews
,”
J. Mol. Biol.
307
,
1091
1102
(
2001
).
94.
A. G.
Gasic
and
M. S.
Cheung
, “
A tale of two desolvation potentials: An investigation of protein behavior under high hydrostatic pressure
,”
J. Phys. Chem. B
124
,
1619
1627
(
2020
).

Supplementary Material

You do not currently have access to this content.