We present a computer simulation study of the aggregation and ordering of short alkane chains using a united atom model description. Our simulation approach allows us to determine the density of states of our systems and, from those, their thermodynamics for all temperatures. All systems show a first order aggregation transition followed by a low-temperature ordering transition. For a few chain aggregates of intermediate lengths (up to N = 40), we show that these ordering transitions resemble the quaternary structure formation in peptides. In an earlier publication, we have already shown that single alkane chains fold into low-temperature structures, best described as secondary and tertiary structure formation, thus completing this analogy here. The aggregation transition in the thermodynamic limit can be extrapolated in pressure to the ambient pressure for which it agrees well with experimentally known boiling points of short alkanes. Similarly, the chain length dependence of the crystallization transition agrees with known experimental results for alkanes. For small aggregates, for which volume and surface effects are not yet well separated, our method allows us to identify the crystallization in the core of the aggregate and at its surface, individually.

1.
D. F.
Parsons
and
D. R. M.
Williams
, “
Globule transitions of a single homopolymer: A Wang-Landau Monte Carlo study
,”
Phys. Rev. E
74
,
041804
(
2006
).
2.
C.
Desgranges
and
J.
Delhommelle
, “
Phase equilibria of molecular fluids via hybrid Monte Carlo Wang–Landau simulations: Applications to benzene and n-alkanes
,”
J. Chem. Phys.
130
,
244109
(
2009
).
3.
P.
Virnau
,
M.
Müller
,
L. G.
MacDowell
, and
K.
Binder
, “
Phase behavior of n-alkanes in supercritical solution: A Monte Carlo study
,”
J. Chem. Phys.
121
,
2169
(
2004
).
4.
J.
Zierenberg
,
M.
Marenz
, and
W.
Janke
, “
Dilute semiflexible polymers with attraction: Collapse, folding and aggregation
,”
Polymers
8
,
333
(
2016
).
5.
J.
Zierenberg
and
W.
Janke
, “
From amorphous aggregates to polymer bundles: The role of stiffness on structural phases in polymer aggregation
,”
Europhys. Lett.
109
,
28002
(
2015
).
6.
C.
Junghans
,
M.
Bachmann
, and
W.
Janke
, “
Statistical mechanics of aggregation and crystallization for semiflexible polymers
,”
Europhys. Lett.
87
,
40002
(
2009
).
7.
J.
Zierenberg
,
M.
Mueller
,
P.
Schierz
,
M.
Marenz
, and
W.
Janke
, “
Aggregation of theta-polymers in spherical confinement
,”
J. Chem. Phys.
141
,
114908
(
2014
).
8.
J.
Zierenberg
,
P.
Schierz
, and
W.
Janke
, “
Canonical free-energy barrier of particle and polymer cluster formation
,”
Nat. Commun.
8
,
14546
(
2017
).
9.
C.
Junghans
,
W.
Janke
, and
M.
Bachmann
, “
Hierarchies in nucleation transitions
,”
Comput. Phys. Commun.
182
,
1937
(
2011
).
10.
M. P.
Taylor
,
P. P.
Aung
, and
W.
Paul
, “
Partition function zeros and phase transitions for a square-well polymer chain
,”
Phys. Rev. E
88
,
012604
(
2013
).
11.
T.
Shakirov
,
S.
Zablotskiy
,
A.
Böker
,
V.
Ivanov
, and
W.
Paul
, “
Comparison of Boltzmann and Gibbs entropies for the analysis of single-chain phase transitions
,”
Eur. Phys. J.: Spec. Top.
226
,
705
(
2017
).
12.
T.
Shakirov
, “
Crystallisation in melts of short, semi-flexible hard-sphere polymer chains: The role of the non-bonded interaction range
,”
Entropy
21
,
856
(
2019
).
13.
T.
Shakirov
and
W.
Paul
, “
Crystallization in melts of short, semiflexible hard polymer chains: An interplay of entropies and dimensions
,”
Phys. Rev. E
97
,
042501
(
2018
).
14.
T.
Shakirov
and
W.
Paul
, “
Folded alkane chains and the emergence of the lamellar crystal
,”
J. Chem. Phys.
150
,
084903
(
2019
).
15.
W.
Janke
and
W.
Paul
, “
Thermodynamics and structure of macromolecules from flat-histogram Monte Carlo simulations
,”
Soft Matter
12
,
642
(
2016
).
16.
T.
Aleksandrov
,
C.
Desgranges
, and
J.
Delhommelle
, “
Vapor–liquid equilibria of copper using hybrid Monte Carlo Wang–Landau simulations
,”
Fluid Phase Equilib.
287
,
79
(
2010
).
17.
E. A.
Mastny
and
J. J.
de Pablo
, “
Direct calculation of solid-liquid equilibria from density-of-states Monte Carlo simulations
,”
J. Chem. Phys.
122
,
124109
(
2005
).
18.
S.
Inglis
and
R. G.
Melko
, “
Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations
,”
Phys. Rev. E
87
,
013306
(
2013
).
19.
G.
Brown
and
T. C.
Schulthess
, “
Wang–Landau estimation of magnetic properties for the Heisenberg model
,”
J. Appl. Phys.
97
,
10E303
(
2005
).
20.
K.
Mukhopadhyay
,
N.
Ghoshal
, and
S. K.
Roy
, “
Monte Carlo simulation of joint density of states in one-dimensional Lebwohl–Lasher model using Wang–Landau algorithm
,”
Phys. Lett. A
372
,
3369
(
2008
).
21.
C.
Zhou
,
T. C.
Schulthess
, and
D. P.
Landau
, “
Monte Carlo simulations of NiFe2O4 nanoparticles
,”
J. Appl. Phys.
99
,
08H906
(
2006
).
22.
C.
Zhou
,
T. C.
Schulthess
,
S.
Torbrügge
, and
D. P.
Landau
, “
Wang-Landau algorithm for continuous models and joint density of states
,”
Phys. Rev. Lett.
96
,
120201
(
2006
).
23.
D.
Jayasri
,
V. S. S.
Sastry
, and
K. P. N.
Murthy
, “
Wang-Landau Monte Carlo simulation of isotropic-nematic transition in liquid crystals
,”
Phys. Rev. E
72
,
036702
(
2005
).
24.
F.
Calvo
, “
Sampling along reaction coordinates with the Wang-Landau method
,”
Mol. Phys.
100
,
3421
(
2002
).
25.
J.
Kwon
and
K. M.
Lee
, “
Wang-Landau Monte Carlo-based tracking methods for abrupt motions
,”
IEEE Trans. Pattern Anal. Mach. Intell.
35
,
1011
(
2012
).
26.
W.
Paul
,
D. Y.
Yoon
, and
G. D.
Smith
, “
An optimized united atom model for simulations of polymethylene melts
,”
J. Chem. Phys.
103
,
1702
(
1995
).
27.
S. A.
Burrows
,
I.
Korotkin
,
S. K.
Smoukov
,
E.
Boek
, and
S.
Karabasov
, “
Benchmarking of molecular dynamics force fields for solid–liquid and solid–solid phase transitions in alkanes
,”
J. Phys. Chem. B
125
,
5145
(
2021
).
28.
F.
Liang
, “
A theory on flat histogram Monte Carlo algorithms
,”
J. Stat. Phys.
122
,
511
(
2006
).
29.
F.
Liang
,
C.
Liu
, and
R. J.
Carroll
, “
Stochastic approximation in Monte Carlo computation
,”
J. Am. Stat. Assoc.
102
,
305
(
2007
).
30.
T.
Shakirov
, “
Convergence estimation of flat-histogram algorithms based on simulation results
,”
Comput. Phys. Commun.
228
,
38
(
2018
).
31.
F.
Wang
and
D. P.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of states
,”
Phys. Rev. Lett.
86
,
2050
(
2001
).
32.
F.
Wang
and
D. P.
Landau
, “
Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
,”
Phys. Rev. E
64
,
056101
(
2001
).
33.
R. E.
Belardinelli
and
V. D.
Pereyra
, “
Fast algorithm to calculate density of states
,”
Phys. Rev. E
75
,
046701
(
2007
).
34.
R. E.
Belardinelli
,
V. D.
Pereyra
,
R.
Dickman
, and
B. J.
Lourenço
, “
Intrinsic convergence properties of entropic sampling algorithms
,”
J. Stat. Mech.: Theory Exp.
2014
,
P07007
.
35.
J. C. S.
Rocha
,
S.
Schnabel
,
D. P.
Landau
, and
M.
Bachmann
, “
Identifying transitions in finite systems by means of partition function zeros and microcanonical inflection-point analysis: A comparison for elastic flexible polymers
,”
Phys. Rev. E
90
,
022601
(
2014
).
36.
J. C. S.
Rocha
,
S.
Schnabel
,
D. P.
Landau
, and
M.
Bachmann
, “
Leading Fisher partition function zeros as indicators of structural transitions in macromolecules
,”
Phys. Procedia
57
,
94
(
2014
).
37.
H. P.
Deutsch
and
R.
Dickman
, “
Equation of state for athermal lattice chains in a 3d fluctuating bond model
,”
J. Chem. Phys.
93
,
8983
(
1990
).
38.
K.
Magoulas
and
D.
Tassios
, “
Thermophysical properties of n-Alkanes from C1 to C20 and their prediction for higher ones
,”
Fluid Phase Equilib.
56
,
119
(
1990
).
39.
H.
Eslami
, “
Equation of state for long-chain n-alkanes
,”
Fluid Phase Equilib.
169
,
19
(
2000
).
40.
S.
Salerno
,
M.
Cascella
,
D.
May
,
P.
Watson
, and
D.
Tassios
, “
Prediction of vapor pressures and saturated volumes with a simple cubic equation of state: Part I. A reliable data base
,”
Fluid Phase Equilib.
27
,
15
(
1986
).
41.
D. L.
Morgan
and
R.
Kobayashi
, “
Direct vapor pressure measurements of ten n-alkanes in the C10-C28 range
,”
Fluid Phase Equilib.
97
,
211
(
1994
).
42.
V.
Piacente
,
D.
Fontana
, and
P.
Scardala
, “
Enthalpies of vaporization of a homologous series of n-alkanes determined from vapor pressure measurements
,”
J. Chem. Eng. Data
39
,
231
(
1994
).
43.
W. M.
Haynes
,
D. R.
Lide
, and
T. J.
Bruno
,
CRC Handbook of Chemistry and Physics
, 97th ed. (
CRC Press, Taylor Francis Group
,
Boca Raton, FL
,
2017
), pp.
33487
42742
.
44.
K.
Qi
and
M.
Bachmann
, “
Classification of phase transitions by microcanonical inflection-point analysis
,”
Phys. Rev. Lett.
120
,
180601
(
2018
).
45.
K.
Qi
,
B.
Liewehr
,
T.
Koci
,
B.
Pattanasiri
,
M. J.
Williams
, and
M.
Bachmann
, “
Influence of bonded interactions on structural phases of flexible polymers
,”
J. Chem. Phys.
150
,
054904
(
2019
).
46.
D.
Aierken
and
M.
Bachmann
, “
Comparison of conformational phase behavior for flexible and semiflexible polymers
,”
Polymers
12
,
3013
(
2020
).

Supplementary Material

You do not currently have access to this content.