The structure and scaling properties of inwardly curved polymer brushes, tethered under good solvent conditions to the inner surface of spherical shells such as membranes and vesicles, are studied by extensive molecular dynamics simulations and compared with earlier scaling and self-consistent field theory predictions for different molecular weights of the polymer chains N and grafting densities σg in the case of strong surface curvature, R−1. We examine the variation of the critical radius R*(σg), separating the regimes of weak concave brushes and compressed brushes, predicted earlier by Manghi et al. [Eur. Phys. J. E 5, 519–530 (2001)], as well as various structural properties such as the radial monomer- and chain-end density profiles, orientation of bonds, and brush thickness. The impact of chain stiffness, κ, on concave brush conformations is briefly considered as well. Eventually, we present the radial profiles of the local pressure normal, PN, and tangential, PT, to the grafting surface, and the surface tension γ(σg), for soft and rigid brushes, and find a new scaling relationship PN(R)σg4, independent of the degree of chain stiffness.

1.
W.-L.
Chen
,
R.
Cordero
,
H.
Tran
, and
C. K.
Ober
, “
50th Anniversary Perspective: Polymer brushes: Novel surfaces for future materials
,”
Macromolecules
50
,
4089
4113
(
2017
).
2.
A.
Shukla
,
S.
Tiwari
,
M. P.
Singh
,
S.
Singh
,
M. K.
Singh
, and
A.
Kumar
, “
A comprehensive review on polymeric micelles: A promising drug delivery carrier
,”
J. Anal. Pharm. Res.
10
,
102
(
2021
).
3.
N.
Dubashynskaya
,
D.
Poshina
,
S.
Raik
,
A.
Urtti
, and
Y. A.
Skorik
, “
Polysaccharides in ocular drug delivery
,”
Pharmaceutics
12
,
22
(
2020
).
4.
D.
Lombardo
,
M. A.
Kiselev
, and
M. T.
Caccamo
, “
Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine
,”
J. Nanomater.
2019
,
3702518
.
5.
J.
Shin
,
B. D.
Cole
,
T.
Shan
, and
Y.
Jang
, “
Heterogeneous synthetic vesicles toward artificial cells: Engineering structure and composition of membranes for multimodal functionalities
,”
Biomacromolecules
23
,
1505
1518
(
2022
).
6.
S. P.
Adiga
and
D. W.
Brenner
, “
Stimuli-responsive polymer brushes for flow control through nanopores
,”
J. Funct. Biomater.
3
,
239
256
(
2012
).
7.
G.
Chen
and
S.
Das
, “
Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density
,”
J. Appl. Phys.
117
,
185304
(
2015
).
8.
I.
Luzinov
,
S.
Minko
, and
V. V.
Tsukruk
, “
Responsive brush layers: From tailored gradients to reversibly assembled nanoparticles
,”
Soft Matter
4
,
714
725
(
2008
).
9.
R.
Toomey
and
M.
Tirrell
, “
Functional polymer brushes in aqueous media from self-assembled and surface-initiated polymers
,”
Annu. Rev. Phys. Chem.
59
,
493
517
(
2008
).
10.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1979
).
11.
S.
Alexander
, “
Adsorption of chain molecules with a polar head a scaling description
,”
J. Phys.
38
,
983
987
(
1977
).
12.
D. I.
Dimitrov
,
A.
Milchev
, and
K.
Binder
, “
Polymer brushes in solvents of variable quality: Molecular dynamics simulations using explicit solvent
,”
J. Chem. Phys.
127
,
084905
(
2007
).
13.
J. S.
Suk
,
Q.
Xu
,
N.
Kim
,
J.
Hanes
, and
L. M.
Ensign
, “
PEGylation as a strategy for improving nanoparticles-based drug and gene delivery
,”
Adv. Drug Delivery Rev.
99
,
28
51
(
2016
).
14.
H.
Shamsi Jazeyi
,
C. A.
Miller
,
M. S.
Wong
,
J. M.
Tour
, and
R.
Verduzco
, “
Polymer-coated nanoparticles for enhanced oil recovery
,”
J. Appl. Polym. Sci.
131
,
40576
(
2014
).
15.
J. O.
Zoppe
,
R. A.
Venditti
, and
O. J.
Rojas
, “
Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes
,”
J. Colloid Interface Sci.
369
,
202
209
(
2012
).
16.
C.
Jiang
,
Y.
Zhang
,
Q.
Wang
, and
T.
Wang
, “
Superhydrophobic polyurethane and silica nanoparticles coating with high transparency and fluorescence
,”
J. Appl. Polym. Sci.
129
,
2959
2965
(
2013
).
17.
R.
Descas
,
J.-U.
Sommer
, and
A.
Blumen
, “
Grafted polymer chains interacting with substrates: Computer simulations and scaling
,”
Macromol. Theory Simul.
17
,
429
(
2006
).
18.
D.
Dimitrov
,
A.
Milchev
, and
K.
Binder
, “
Polymer brushes on flat and curved substrates: Scaling concepts and computer simulations
,”
Macromol. Symp.
252
,
47
57
(
2007
).
19.
M.
Daoud
and
J. P.
Cotton
, “
Star shaped polymers: A model for the conformation and its concentration dependence
,”
J. Phys.
43
,
531
538
(
1982
).
20.
E. B.
Zhulina
,
T. M.
Birshtein
, and
O. V.
Borisov
, “
Curved polymer and polyelectrolyte brushes beyond the Daoud-Cotton model
,”
Eur. Phys. J. E
20
,
243
256
(
2006
).
21.
C.-W.
Li
,
D.
Romeis
,
M.
Koch
,
H.
Merlitz
, and
J.-U.
Sommer
, “
Theoretical analysis of the elastic energy contributions to polymer brushes in poor solvent: A refined mean-field theory
,”
J. Chem. Phys.
157
,
104902
(
2022
).
22.
F.
Lo Verso
,
S. A.
Egorov
,
A.
Milchev
, and
K.
Binder
, “
Spherical polymer brushes under good solvent conditions: Molecular dynamics results compared to density functional theory
,”
J. Chem. Phys.
133
,
184901
(
2010
).
23.
P.
Romiszowski
and
A.
Sikorski
, “
The structure of polymer chains in confinement. A Monte Carlo study
,”
J. Mol. Model.
15
,
681
686
(
2009
).
24.
A.
Milchev
,
K.
Binder
,
D. W.
Heermann
, and
D. I.
Dimitrov
, “
Structure of polymer brushes in cylindrical tubes: A molecular dynamics simulation
,”
Macromol. Theory Simul.
15
,
573
583
(
2006
).
25.
D. I.
Dimitrov
,
A.
Milchev
, and
K.
Binder
, “
Polymer brushes in cylindrical pores: Simulation versus scaling theory
,”
J. Chem. Phys.
125
,
034905
(
2006
).
26.
S. A.
Egorov
,
A.
Milchev
,
L.
Klushin
, and
K.
Binder
, “
Structural properties of concave cylindrical brushes interacting with free chains
,”
Soft Matter
7
,
5669
(
2011
).
27.
R.
Wang
,
S. A.
Egorov
,
A.
Milchev
, and
K.
Binder
, “
Stretching of free chains confined in concave brush-coated nanocylinders
,”
Soft Matter
45
,
2580
(
2012
).
28.
K.
Binder
and
A.
Milchev
, “
Polymer brushes on flat and curved surfaces: How computer simulations can help to test theories and to interpret experiments
,”
J. Polym. Sci., Part B: Polym. Phys.
50
,
1515
1555
(
2012
).
29.
J. J.
Cerdà
,
T.
Sintes
, and
R.
Toral
, “
Spherical brushes within spherical cavities: A self-consistent field and Monte Carlo study
,”
J. Chem. Phys.
131
,
134901
(
2009
).
30.
M. Y.
Laktionov
,
E. B.
Zhulina
,
R. P.
Richter
, and
O. V.
Borisov
, “
Polymer brush in a nanopore: Effects of solvent strength and macromolecular architecture studied by self-consistent field and scaling theory
,”
Polymers
13
,
3929
(
2021
).
31.
M.
Mangi
,
M.
Aubouy
,
G.
Gay
, and
C.
Ligoure
,
Eur. Phys. J. E
5
,
519
530
(
2001
).
32.
K.
Prochazka
, “
Monte Carlo study of tethered chains in spherical volumes
,”
J. Phys. Chem.
99
,
14108
14116
(
1995
).
33.
P. L.
Cheng
,
C. V.
Berney
, and
R. E.
Cohen
, “
Distribution of chain ends inside the polybutadiene microspheres of styrene-butadiene diblock copolymers
,”
Macromolecules
21
,
3442
3446
(
1988
).
34.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
(
1971
).
35.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular dynamics simulation
,”
J. Chem. Phys.
92
,
5057
(
1990
).
36.
A.
Milchev
,
S. A.
Egorov
,
A.
Nikoubashman
, and
K.
Binder
, “
Conformations and orientational ordering of semiflexible polymers in spherical confinement
,”
J. Chem. Phys.
146
,
194907
(
2017
).
37.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
Oxford
,
2017
).
39.
J. A.
Andersen
,
C. D.
Lorenz
, and
A.
Travesset
, “
General purpose molecular dynamics simulations fully implemented on graphics processing units
,”
J. Comput. Phys.
227
,
5342
(
2008
).
40.
J.
Glaser
,
T. D.
Nguyen
,
J. A.
Anderson
,
P.
Liu
,
F.
Spiga
,
J. A.
Millan
,
D. C.
Morse
, and
S. C.
Glotzer
, “
Strong scaling of general-purpose molecular dynamics simulations on GPUs
,”
Comput. Phys. Commun.
192
,
97
(
2015
).
41.
T.
Nakamura
,
W.
Shinoda
, and
T.
Ikeshoji
, “
Novel numerical method for calculating the pressure tensor in spherical coordinates for molecular systems
,”
J. Chem. Phys.
135
,
094106
(
2011
).
42.
R.
Lovett
and
M.
Baus
, “
A molecular theory of the Laplace relation and of the local forces in a curved interface
,”
J. Chem. Phys.
106
,
635
(
1997
).
43.
A.
Ghoufi
and
P.
Malfreyt
, “
Local pressure components and surface tension of spherical interfaces. Thermodynamics versus mechanical definitions. I. A mesoscale modeling of droplets
,”
J. Chem. Phys.
135
,
104105
(
2011
).
44.
Y.-B.
Zhulina
, “
Conformations of macromolecules grafted onto solid spherical surface
,”
Vysokomol. Soedin. B
25
,
834
838
(
1983
), see http://polymsci.ru/static/Archive/1983/VMS_1983_T25ks_11/VMS_1983_T25ks_11_834-838.pdf.
45.
V. M.
Amoskov
and
V. A.
Pryamitsyn
, “
Theory of monolayers of non-Gaussian polymer chains grafted onto a surface
,”
J. Chem. Soc., Faraday Trans.
90
,
889
893
(
1994
).
46.
M.
Kitabata
,
K.
Fujimoto
,
N.
Yoshii
, and
S.
Okazaki
, “
A molecular dynamics study of local pressure and surface tensions of SDS micelles and dodecane droplets in water
,”
J. Chem. Phys.
144
,
224701
(
2016
).
You do not currently have access to this content.