Layered double hydroxides (LDH) can be transformed from alkaline supercapacitor material into metal-cation storage cathode working in neutral electrolytes through electrochemical activation. However, the rate performance for storing large cations is restricted by the small interlayer distance of LDH. Herein, the interlayer distance of NiCo-LDH is expanded by replacing the interlayer nitrate ions with 1,4-benzenedicarboxylic anions (BDC), leading to the enhanced rate performance for storing large cations (Na+, Mg2+, and Zn2+), whereas almost the unchanged one for storing small-radius Li+ ions. The improved rate performance of the BDC-pillared LDH (LDH-BDC) stems from the reduced charge-transfer and Warburg resistances during charge/discharge due to the increased interlayer distance, as revealed by in situ electrochemical impedance spectra. The asymmetric zinc-ion supercapacitor assembled with LDH-BDC and activated carbon presents high energy density and cycling stability. This study demonstrates an effective strategy to improve the large cation storage performance of LDH electrodes by increasing the interlayer distance.

1.
N.
Arun
,
A.
Jain
,
V.
Aravindan
,
S.
Jayaraman
,
W.
Chui Ling
,
M. P.
Srinivasan
, and
S.
Madhavi
,
Nano Energy
12
,
69
(
2015
).
2.
J.
Chen
,
B.
Yang
,
B.
Liu
,
J.
Lang
, and
X.
Yan
,
Curr. Opin. Electrochem.
18
,
1
(
2019
).
3.
A.
Borenstein
,
O.
Hanna
,
R.
Attias
,
S.
Luski
,
T.
Brousse
, and
D.
Aurbach
,
J. Mater. Chem. A
5
,
12653
(
2017
).
4.
J.
Zhao
,
H.
Lai
,
Z.
Lyu
,
Y.
Jiang
,
K.
Xie
,
X.
Wang
,
Q.
Wu
,
L.
Yang
,
Z.
Jin
,
Y.
Ma
,
J.
Liu
, and
Z.
Hu
,
Adv. Mater.
27
,
3541
(
2015
).
5.
Y.
Bu
,
T.
Sun
,
Y.
Cai
,
L.
Du
,
O.
Zhuo
,
L.
Yang
,
Q.
Wu
,
X.
Wang
, and
Z.
Hu
,
Adv. Mater.
29
,
1700470
(
2017
).
6.
W.
Raza
,
F.
Ali
,
N.
Raza
,
Y.
Luo
,
K.-H.
Kim
,
J.
Yang
,
S.
Kumar
,
A.
Mehmood
, and
E. E.
Kwon
,
Nano Energy
52
,
441
(
2018
).
7.
L. L.
Zhang
and
X. S.
Zhao
,
Chem. Soc. Rev.
38
,
2520
(
2009
).
8.
M. P.
Bichat
,
E.
Raymundo-Piñero
, and
F.
Béguin
,
Carbon
48
,
4351
(
2010
).
9.
S.-W.
Zhang
,
B.-S.
Yin
,
X.-X.
Liu
,
D.-M.
Gu
,
H.
Gong
, and
Z.-B.
Wang
,
Nano Energy
59
,
41
(
2019
).
10.
N.
Jabeen
,
A.
Hussain
,
Q.
Xia
,
S.
Sun
,
J.
Zhu
, and
H.
Xia
,
Adv. Mater.
29
,
1700804
(
2017
).
11.
B.
Deng
,
T.
Lei
,
W.
Zhu
,
L.
Xiao
, and
J.
Liu
,
Adv. Funct. Mater.
28
,
1704330
(
2018
).
12.
S.
Dong
,
L.
Shen
,
H.
Li
,
G.
Pang
,
H.
Dou
, and
X.
Zhang
,
Adv. Funct. Mater.
26
,
3703
(
2016
).
13.
K.
Krishnamoorthy
,
P.
Pazhamalai
,
S.
Sahoo
,
J. H.
Lim
,
K. H.
Choi
, and
S. J.
Kim
,
ChemElectroChem
4
,
3302
(
2017
).
14.
S.
Wang
,
Q.
Wang
,
W.
Zeng
,
M.
Wang
,
L.
Ruan
, and
Y.
Ma
,
Nano-Micro Lett.
11
,
70
(
2019
).
15.
X.
Zhang
,
Z.
Pei
,
C.
Wang
,
Z.
Yuan
,
L.
Wei
,
Y.
Pan
,
A.
Mahmood
,
Q.
Shao
, and
Y.
Chen
,
Small
15
,
1903817
(
2019
).
16.
R.
Demir-Cakan
,
M. R.
Palacin
, and
L.
Croguennec
,
J. Mater. Chem. A
7
,
20519
(
2019
).
17.
X.
Ma
,
J.
Cheng
,
L.
Dong
,
W.
Liu
,
J.
Mou
,
L.
Zhao
,
J.
Wang
,
D.
Ren
,
J.
Wu
,
C.
Xu
, and
F.
Kang
,
Energy Storage Mater.
20
,
335
(
2019
).
18.
T.
Xiong
,
T. L.
Tan
,
L.
Lu
,
W. S. V.
Lee
, and
J.
Xue
,
Adv. Energy Mater.
8
,
1702630
(
2018
).
19.
M.
Ulaganathan
,
V.
Aravindan
,
W. C.
Ling
,
Q.
Yan
, and
S.
Madhavi
,
J. Mater. Chem. A
4
,
15134
(
2016
).
20.
T.-M.
Ou
,
C.-T.
Hsu
, and
C.-C.
Hu
,
J. Electrochem. Soc.
162
,
A5124
(
2015
).
21.
D.
Kundu
,
B. D.
Adams
,
V.
Duffort
,
S. H.
Vajargah
, and
L. F.
Nazar
,
Nat. Energy
1
,
16119
(
2016
).
22.
J. H.
Jo
,
Y.-K.
Sun
, and
S.-T.
Myung
,
J. Mater. Chem. A
5
,
8367
(
2017
).
23.
Q.
Wang
,
S.
Wang
,
X.
Guo
,
L.
Ruan
,
N.
Wei
,
Y.
Ma
,
J.
Li
,
M.
Wang
,
W.
Li
, and
W.
Zeng
,
Adv. Electron. Mater.
5
,
1900537
(
2019
).
24.
K.
Zhu
,
H.
Zhang
,
K.
Ye
,
W.
Zhao
,
J.
Yan
,
K.
Cheng
,
G.
Wang
,
B.
Yang
, and
D.
Cao
,
ChemElectroChem
4
,
3018
(
2017
).
25.
L.
Zhang
,
L.
Chen
,
X.
Zhou
, and
Z.
Liu
,
Adv. Energy Mater.
5
,
1400930
(
2015
).
26.
L.
Dong
,
X.
Ma
,
Y.
Li
,
L.
Zhao
,
W.
Liu
,
J.
Cheng
,
C.
Xu
,
B.
Li
,
Q.-H.
Yang
, and
F.
Kang
,
Energy Storage Mater.
13
,
96
(
2018
).
27.
G.
Hasegawa
,
K.
Kanamori
,
T.
Kiyomura
,
H.
Kurata
,
T.
Abe
, and
K.
Nakanishi
,
Chem. Mater.
28
,
3944
(
2016
).
28.
P.
Liu
,
Y.
Gao
,
Y.
Tan
,
W.
Liu
,
Y.
Huang
,
J.
Yan
, and
K.
Liu
,
Nano Res.
12
,
2835
(
2019
).
29.
G.
Xiong
,
P.
He
,
D.
Wang
,
Q.
Zhang
,
T.
Chen
, and
T. S.
Fisher
,
Adv. Funct. Mater.
26
,
5460
(
2016
).
30.
G. M.
Tomboc
,
J.
Kim
,
Y.
Wang
,
Y.
Son
,
J.
Li
,
J. Y.
Kim
, and
K.
Lee
,
J. Mater. Chem. A
9
,
4528
(
2021
).
31.
J.
Zhao
,
Y.
Guo
,
Z.
Shen
,
L.
Yang
,
Q.
Wu
,
X.
Wang
, and
Z.
Hu
,
CIESC J.
71
,
4851
(
2020
).
32.
Z.
Li
,
H.
Duan
,
M.
Shao
,
J.
Li
,
D.
O'Hare
,
M.
Wei
, and
Z. L.
Wang
,
Chem
4
,
2168
(
2018
).
33.
J.
Meng
,
Y.
Song
,
Z.
Qin
,
Z.
Wang
,
X.
Mu
,
J.
Wang
, and
X. X.
Liu
,
Adv. Funct. Mater.
32
,
2204026
(
2022
).
34.
Y.
Zhao
,
P.
Zhang
,
J.
Liang
,
X.
Xia
,
L.
Ren
,
L.
Song
,
W.
Liu
, and
X.
Sun
,
Adv. Mater.
34
,
2204320
(
2022
).
35.
J.
Zhao
,
C.
Ge
,
Z.
Zhao
,
Q.
Wu
,
M.
Liu
,
M.
Yan
,
L.
Yang
,
X.
Wang
, and
Z.
Hu
,
Nano Energy
76
,
105026
(
2020
).
36.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
 et al, Gaussian 16, Revision A.03,
2016
.
37.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
38.
A. K.
Wilson
,
D. E.
Woon
,
K. A.
Peterson
, and
T. H.
Dunning
,
J. Chem. Phys.
110
,
7667
(
1999
).
39.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
40.
B.
Mennucci
,
R.
Cammi
, and
J.
Tomasi
,
J. Chem. Phys.
109
,
2798
(
1998
).
41.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. B
113
,
6378
(
2009
).
42.
T.
Lu
and
F.
Chen
,
J. Comput. Chem.
33
,
580
(
2012
).
43.
T.
Lu
and
F.
Chen
,
J. Mol. Graphics Modell.
38
,
314
(
2012
).
44.
V.
Augustyn
,
P.
Simon
, and
B.
Dunn
,
Energy Environ. Sci.
7
,
1597
(
2014
).
45.
L.
Pauling
,
Nature of the Chemical Bond
, 2nd ed. (
Cornell University Press
,
Ithaca, NY
,
1948
).
46.
D.
Zha
,
H.
Sun
,
Y.
Fu
,
X.
Ouyang
, and
X.
Wang
,
Electrochim. Acta
236
,
18
(
2017
).
47.
Y.
Gogotsi
and
R. M.
Penner
,
ACS Nano
12
,
2081
(
2018
).
48.
Y.
Zhang
,
L.
Chen
,
C.
Hao
,
X.
Zheng
,
Y.
Guo
,
L.
Chen
,
K.
Lai
,
Y.
Zhang
, and
L.
Ci
,
J. Energy Chem.
46
,
53
(
2020
).
49.
J.
Chao
,
L.
Yang
,
H.
Zhang
,
J.
Liu
,
R.
Hu
, and
M.
Zhu
,
J. Power Sources
450
,
227680
(
2020
).
50.
L.
Chen
,
L.
Chen
,
W.
Zhai
,
D.
Li
,
Y.
Lin
,
S.
Guo
,
J.
Feng
,
L.
Zhang
,
L.
Song
,
P.
Si
, and
L.
Ci
,
J. Power Sources
413
,
302
(
2019
).
51.
H.
Ren
,
L.
Zhang
,
J.
Zhang
,
T.
Miao
,
R.
Yuan
,
W.
Chen
,
Z.
Wang
,
J.
Yang
, and
B.
Zhao
,
Carbon
198
,
46
(
2022
).
52.
S.
Chen
,
G.
Yang
,
X.
Zhao
,
N.
Wang
,
T.
Luo
,
X.
Chen
,
T.
Wu
,
S.
Jiang
,
P. A.
van Aken
,
S.
Qu
,
T.
Li
,
L.
Du
,
J.
Zhang
,
H.
Wang
, and
H.
Wang
,
Front. Chem.
8
,
663
(
2020
).
53.
Z.
Li
,
D.
Guo
,
D.
Wang
,
M.
Sun
, and
H.
Sun
,
J. Power Sources
506
,
230197
(
2021
).
54.
Y.
Deng
,
H.
Wang
,
K.
Zhang
,
J.
Qiu
, and
L.
Yan
,
Adv. Sustainable Syst.
6
,
2100191
(
2022
).

Supplementary Material

You do not currently have access to this content.