Porous solid films that promote large apparent contact angles are interesting systems since their wetting properties are dependent on both the surface structure and water penetration into the film. In this study, a parahydrophobic coating is made by sequential dip coating of titanium dioxide nanoparticles and stearic acid on polished copper substrates. The apparent contact angles are determined using the tilted plate method, and it is found that the liquid–vapor interaction decreases and water droplets are more likely to move off the film when the number of coated layers increases. Interestingly, it is found that under some conditions, the front contact angle can be smaller than the back contact angle. Scanning electron microscopy observations demonstrate that the coating process led to the formation of hydrophilic TiO2 nanoparticle domains and hydrophobic stearic acid flakes that allows heterogeneous wetting. By monitoring the electrical current through the water droplet to the copper substrate, it is found that the water drops penetrate the coating layer to make direct contact with the copper surface with a time delay and magnitude that depends on the coating thickness. This additional penetration of water into the porous film enhances the adhesion of the droplet to the film and provides a clue to understand the contact angle hysteresis.

1.
J. T.
Simpson
,
S. R.
Hunter
, and
T.
Aytug
, “
Superhydrophobic materials and coatings: A review
,”
Rep. Prog. Phys.
78
,
086501
(
2015
).
2.
W.
Barthlott
and
C.
Neinhuis
, “
Purity of the sacred lotus, or escape from contamination in biological surfaces
,”
Planta
202
,
1
8
(
1997
).
3.
C. R.
Szczepanski
,
F.
Guittard
, and
T.
Darmanin
, “
Recent advances in the study and design of parahydrophobic surfaces: From natural examples to synthetic approaches
,”
Adv. Colloid Interface Sci.
241
,
37
61
(
2017
).
4.
A.
Marmur
,
C.
Della Volpe
,
S.
Siboni
,
A.
Amirfazli
, and
J. W.
Drelich
, “
Contact angles and wettability: Towards common and accurate terminology
,”
Surf. Innovations
5
,
3
8
(
2017
).
5.
C.
Yuan
,
M.
Huang
,
X.
Yu
,
Y.
Ma
, and
X.
Luo
, “
A simple approach to fabricate the rose petal-like hierarchical surfaces for droplet transportation
,”
Appl. Surf. Sci.
385
,
562
568
(
2016
).
6.
R. N.
Wenzel
, “
Resistance of solid surfaces to wetting by water
,”
Ind. Eng. Chem.
28
,
988
994
(
1936
).
7.
A. B. D.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
8.
E.
Bormashenko
, “
Progress in understanding wetting transitions on rough surfaces
,”
Adv. Colloid Interface Sci.
222
,
92
103
(
2015
).
9.
S. M.
Hurst
,
B.
Farshchian
,
J.
Choi
,
J.
Kim
, and
S.
Park
, “
A universally applicable method for fabricating superhydrophobic polymer surfaces
,”
Colloids Surf., A
407
,
85
90
(
2012
).
10.
J.
Bravo
,
L.
Zhai
,
Z.
Wu
,
R. E.
Cohen
, and
M. F.
Rubner
, “
Transparent superhydrophobic films based on silica nanoparticles
,”
Langmuir
23
,
7293
7298
(
2007
).
11.
Y.-H.
Lin
,
K.-L.
Su
,
P.-S.
Tsai
,
F.-L.
Chuang
, and
Y.-M.
Yang
, “
Fabrication and characterization of transparent superhydrophilic/superhydrophobic silica nanoparticulate thin films
,”
Thin Solid Films
519
,
5450
5455
(
2011
).
12.
Y.
Hu
,
S.
Huang
,
S.
Liu
, and
W.
Pan
, “
A corrosion-resistance superhydrophobic TiO2 film
,”
Appl. Surf. Sci.
258
,
7460
7464
(
2012
).
13.
M.
Khazaei
,
M. T.
Sadeghi
, and
M. S.
Hosseini
, “
Stable superhydrophilic coating on superhydrophobic porous media by functionalized nanoparticles
,”
Mater. Res. Express
5
,
015019
(
2018
).
14.
M. S.
Hosseini
,
M. T.
Sadeghi
, and
M.
Khazaei
, “
Improving oleophobicity and hydrophilicity of superhydrophobic surface by TiO2 coatings
,”
Mater. Res. Express
5
,
085010
(
2018
).
15.
Q.
Wang
,
B.
Zhang
,
M.
Qu
,
J.
Zhang
, and
D.
He
, “
Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid
,”
Appl. Surf. Sci.
254
,
2009
2012
(
2008
).
16.
J.
Zhu
, “
A novel fabrication of superhydrophobic surfaces on aluminium substrate
,”
Appl. Surf. Sci.
447
,
363
367
(
2018
).
17.
Z.
Chen
,
F.
Tian
,
A.
Hu
, and
M.
Li
, “
A facile process for preparing superhydrophobic nickel films with stearic acid
,”
Surf. Coat. Technol.
231
,
88
92
(
2013
).
18.
J.
Zhu
and
X.
Hu
, “
A novel and facile fabrication of superhydrophobic surfaces on copper substrate via machined operation
,”
Mater. Lett.
190
,
115
118
(
2017
).
19.
Z.
Wei
,
D.
Jiang
,
J.
Chen
,
S.
Ren
, and
L.
Li
, “
Fabrication of mechanically robust superhydrophobic aluminum surface by acid etching and stearic acid modification
,”
J. Adhes. Sci. Technol.
31
,
2380
2397
(
2017
).
20.
R.
Jain
and
R.
Pitchumani
, “
Facile fabrication of durable copper-based superhydrophobic surfaces via electrodeposition
,”
Langmuir
34
,
3159
3169
(
2017
).
21.
A. B.
Gurav
,
S. S.
Latthe
,
R. S.
Vhatkar
,
J.-G.
Lee
,
D.-Y.
Kim
,
J.-J.
Park
, and
S. S.
Yoon
, “
Superhydrophobic surface decorated with vertical ZnO nanorods modified by stearic acid
,”
Ceram. Int.
40
,
7151
7160
(
2014
).
22.
S. M.
Shah
,
U.
Zulfiqar
,
S. Z.
Hussain
,
I.
Ahmad
,
Habib-ur-Rehman
,
I.
Hussain
, and
T.
Subhani
, “
A durable superhydrophobic coating for the protection of wood materials
,”
Mater. Lett.
203
,
17
20
(
2017
).
23.
M. A.
Arfaoui
,
P. I.
Dolez
,
M.
Dubé
, and
É.
David
, “
Preparation of a hydrophobic recycled jute-based nonwoven using a titanium dioxide/stearic acid coating
,”
J. Text. Inst.
110
,
16
25
(
2019
).
24.
M.
Abbas
,
H.
Iftikhar
,
M.
Malik
, and
A.
Nazir
, “
Surface coatings of TiO2 nanoparticles onto the designed fabrics for enhanced self-cleaning properties
,”
Coatings
8
,
35
(
2018
).
25.
A.
Marmur
, “
The contact angle hysteresis puzzle
,”
Colloids Interfaces
6
,
39
(
2022
).
26.
H.-J.
Butt
,
J.
Liu
,
K.
Koynov
,
B.
Straub
,
C.
Hinduja
,
I.
Roismann
,
R.
Berger
,
X.
Li
,
D.
Vollmer
,
W.
Steffen
, and
M.
Kappl
, “
Contact angle hysteresis
,”
Curr. Opin. Colloid Interface Sci.
59
,
101574
(
2022
).
27.
C. G. L.
Furmidge
, “
Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention
,”
J. Colloid Sci.
17
(
4
),
309
324
(
1962
).
28.
E.
Pierce
,
F. J.
Carmona
, and
A.
Amirfazli
, “
Understanding of sliding and contact angle results in tilted plate experiments
,”
Colloids Surf., A
323
,
73
82
(
2008
).
29.
B.
Krasovitski
and
A.
Marmur
, “
Drops down the hill: Theoretical study of limiting contact angles and hysteresis range on a tilted plate
,”
Langmuir
21
,
3881
3885
(
2005
).
30.
R.
Flatabø
,
A.
Coste
, and
M. M.
Greve
, “
A systematic investigation of the charging effect in scanning electron microscopy for metal nanostructures on insulating substrates
,”
J. Microsc.
265
,
287
297
(
2017
).
31.
P.
Papadopoulos
,
L.
Mammen
,
X.
Deng
,
D.
Vollmer
, and
H.-J.
Butt
, “
How superhydrophobicity breaks down
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
3254
3258
(
2013
).
32.
S. T.
Larsen
,
N. K.
Andersen
,
E.
Søgaard
, and
R.
Taboryski
, “
Structure irregularity impedes drop roll-off at superhydrophobic surfaces
,”
Langmuir
30
,
5041
5045
(
2014
).
33.
J. C.
Berg
,
An Introduction to Interfaces and Colloids: The Bridge to Nanoscience
1st ed. (
World Scientific
,
2010
).
34.
P. S.
Swain
and
R.
Lipowsky
, “
Contact angles on heterogenous surfaces: A new look at Cassie’s and Wenzel’s laws
,”
Langmuir
14
,
6772
6780
(
1998
).
35.
N. K.
Adam
and
G.
Jessop
, “
CCL.—Angles of contact and polarity of solid surfaces
,”
J. Chem. Soc.
127
,
1863
1868
(
1925
).
36.
N.
Frøvik
,
M. M.
Greve
, and
L. E.
Helseth
, “
Nanostructures and wetting properties controlled by reactive ion etching of fluorinated ethylene propylene
,”
Colloids Surf., A
574
,
228
238
(
2019
).
37.
D. C.
Standnes
and
P.
Fotland
, “
On the importance of the entropic contribution to the Helmholtz free energy for the existence of contact angle hysteresis
,”
Colloid Interface Sci. Commun.
50
,
100664
(
2022
).
38.
L.
Feng
,
Y.
Zhang
,
J.
Xi
,
Y.
Zhu
,
N.
Wang
,
F.
Xia
, and
L.
Jiang
, “
Petal effect: A superhydrophobic state with high adhesive force
,”
Langmuir
24
,
4114
4119
(
2008
).
39.
A.
Winkleman
,
G.
Gotesman
,
A.
Yoffe
, and
R.
Naaman
, “
Immobilizing a drop of water: Fabricating highly hydrophobic surfaces that pin water droplets
,”
Nano Lett.
8
,
1241
1245
(
2008
).
40.
E.
Bormashenko
,
T.
Stein
,
R.
Pogreb
, and
D.
Aurbach
, “
Petal effect on surfaces based on lycopodium: High-stick surfaces demonstrating high apparent contact angles
,”
J. Phys. Chem. C
113
,
5568
5572
(
2009
).
41.
X.
Wang
and
R. A.
Weiss
, “
A facile method for preparing sticky, hydrophobic polymer surfaces
,”
Langmuir
28
,
3298
3305
(
2012
).
42.
J. B. K.
Law
,
A. M. H.
Ng
,
A. Y.
He
, and
H. Y.
Low
, “
Bioinspired ultrahigh water pinning nanostructures
,”
Langmuir
30
,
325
331
(
2014
).
43.
J.
Wu
,
J.
Xia
,
W.
Lei
, and
B.-p.
Wang
, “
Advanced understanding of stickiness on superhydrophobic surfaces
,”
Sci. Rep.
3
,
3268
(
2013
).
44.
K.
Grundke
,
K.
Pöschel
,
A.
Synytska
,
R.
Frenzel
,
A.
Drechsler
,
M.
Nitschke
,
A. L.
Cordeiro
,
P.
Uhlmann
, and
P. B.
Welzel
, “
Experimental studies of contact angle hysteresis phenomena on polymer surfaces — Toward the understanding and control of wettability for different applications
,”
Adv. Colloid Interface Sci.
222
,
350
376
(
2015
).
45.
B.
Balu
,
V.
Breedveld
, and
D. W.
Hess
, “
Fabrication of ‘roll-off’ and ‘sticky’ superhydrophobic cellulose surfaces via plasma processing
,”
Langmuir
24
,
4785
4790
(
2008
).
46.
S.
Alofi
,
C.
O’Rourke
, and
A.
Mills
, “
Modelling the kinetics of stearic acid destruction on TiO2 ‘self-cleaning’ photocatalytic films
,”
Appl. Catal., A
647
,
118899
(
2022
).
47.
S.
Alofi
,
C.
O’Rourke
, and
A.
Mills
, “
Photocatalytic destruction of stearic acid by TiO2 film: Evidence of highly efficient transport of photogenerated electrons and holes
,”
J. Photochem. Photobiol., A
435
,
114273
(
2023
).
48.
A. S.
Gliozzi
,
A. L.
Alexe-Ionescu
, and
G.
Barbero
, “
Ohmic model for electrodeposition of metallic ions
,”
Phys. Lett. A
379
,
2657
2660
(
2015
).
49.
R.
Lucas
, “
Über das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten
,”
Kolloid-Z.
23
,
15
22
(
1918
).
50.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
,
273
283
(
1921
).
51.
A.
Rogacs
,
J. E.
Steinbrenner
,
J. A.
Rowlette
,
J. M.
Weisse
,
X. L.
Zheng
, and
K. E.
Goodson
,
J. Colloid Interface Sci.
349
,
354
360
(
2010
).
52.
M.
Mercuri
,
K.
Pierpauli
,
M. G.
Bellino
, and
C. L. A.
Berli
, “
Complex filling dynamics in mesoporous thin films
,”
Langmuir
33
,
152
157
(
2017
).

Supplementary Material

You do not currently have access to this content.