Information about molecular collisions is encoded in the shapes of collision-perturbed molecular resonances. This connection between molecular interactions and line shapes is most clearly seen in simple systems, such as the molecular hydrogen perturbed by a noble gas atom. We study the H2–Ar system by means of highly accurate absorption spectroscopy and ab initio calculations. On the one hand, we use the cavity-ring-down-spectroscopy technique to record the shapes of the S(1) 3-0 line of molecular hydrogen perturbed by argon. On the other hand, we simulate the shapes of this line using ab initio quantum-scattering calculations performed on our accurate H2–Ar potential energy surface (PES). In order to validate the PES and the methodology of quantum-scattering calculations separately from the model of velocity-changing collisions, we measured the spectra in experimental conditions in which the influence of the latter is relatively minor. In these conditions, our theoretical collision-perturbed line shapes reproduce the raw experimental spectra at the percent level. However, the collisional shift, δ0, differs from the experimental value by 20%. Compared to other line-shape parameters, collisional shift displays much higher sensitivity to various technical aspects of the computational methodology. We identify the contributors to this large error and find the inaccuracies of the PES to be the dominant factor. With regard to the quantum scattering methodology, we demonstrate that treating the centrifugal distortion in a simple, approximate manner is sufficient to obtain the percent-level accuracy of collisional spectra.

1.
F.
Thibault
,
P.
Wcisło
, and
R.
Ciuryło
, “
A test of H2-He potential energy surfaces
,”
Eur. Phys. J. D
70
,
236
(
2014
).
2.
N.
Stolarczyk
,
P.
Wcisło
, and
R.
Ciuryło
, “
Inhomogeneous broadening, narrowing and shift of molecular lines under frequent velocity-changing collisions
,”
J. Quant. Spectrosc. Radiat. Transfer
287
,
108246
(
2022
).
3.
V. G.
Cooper
,
A. D.
May
,
E. H.
Hara
, and
H. F. P.
Knapp
, “
Dicke narrowing and collisional broadening of the S0(0) and S0(1) Raman line of H2
,”
Can. J. Phys.
46
,
2019
2023
(
1968
).
4.
P.
Wcisło
,
F.
Thibault
,
H.
Cybulski
, and
R.
Ciuryło
, “
Strong competition between velocity-changing and phase- or state-changing collisions in H2 spectra perturbed by Ar
,”
Phys. Rev. A
91
,
052505
(
2015
).
5.
P.
Wcisło
,
F.
Thibault
,
N.
Stolarczyk
,
H.
Jóźwiak
,
M.
Słowiński
,
M.
Gancewski
,
K.
Stankiewicz
,
M.
Konefał
,
S.
Kassi
,
A.
Campargue
,
Y.
Tan
,
J.
Wang
,
K.
Patkowski
,
R.
Ciuryło
,
D.
Lisak
,
R.
Kochanov
,
L.
Rothman
, and
I.
Gordon
, “
The first comprehensive dataset of beyond-Voigt line-shape parameters from ab initio quantum scattering calculations for the HITRAN database: He-perturbed H2 case study
,”
J. Quant. Spectrosc. Radiat. Transfer
260
,
107477
(
2021
).
6.
N.
Stolarczyk
,
F.
Thibault
,
H.
Cybulski
,
H.
Jóźwiak
,
G.
Kowzan
,
B.
Vispoel
,
I. E.
Gordon
,
L. S.
Rothman
,
R. R.
Gamache
, and
P.
Wcisło
, “
Evaluation of different parameterizations of temperature dependences of the line-shape parameters based on ab initio calculations: Case study for the HITRAN database
,”
J. Quant. Spectrosc. Radiat. Transfer
240
,
106676
(
2020
).
7.
F.
Chaussard
,
X.
Michaut
,
R.
Saint-Loup
,
H.
Berger
,
P.
Joubert
,
B.
Lance
,
J.
Bonamy
, and
D.
Robert
, “
Collisional effects on spectral line shape from the Doppler to the collisional regime: A rigorous test of a unified model
,”
J. Chem. Phys.
112
,
158
166
(
2000
).
8.
H.
Tran
,
F.
Thibault
, and
J.-M.
Hartmann
, “
Collision-induced velocity changes from molecular dynamic simulations in H2–Ar: A test of the Keilson–Storer model and of line-broadening/shifting calculations for the Q(1) Raman line
,”
J. Quant. Spectrosc. Radiat. Transfer
112
,
1035
1042
(
2011
).
9.
P.
Wcisło
,
H.
Tran
,
S.
Kassi
,
A.
Campargue
,
F.
Thibault
, and
R.
Ciuryło
, “
Velocity-changing collisions in pure H2 and H2–Ar mixture
,”
J. Chem. Phys.
141
,
074301
(
2014
).
10.
M.
Słowiński
,
H.
Jóźwiak
,
M.
Gancewski
,
K.
Stankiewicz
,
N.
Stolarczyk
,
Y.
Tan
,
J.
Wang
,
A.-W.
Liu
,
S.-M.
Hu
,
S.
Kassi
,
A.
Campargue
,
K.
Patkowski
,
P. S.
Żuchowski
,
R.
Ciuryło
,
F.
Thibault
, and
P.
Wcisło
, “
Collisional line-shape effects in accurate He-perturbed H2 spectra
,”
J. Quant. Spectrosc. Radiat. Transfer
277
,
107951
(
2022
).
11.
P.
Wcisło
,
F.
Thibault
,
M.
Zaborowski
,
S.
Wójtewicz
,
A.
Cygan
,
G.
Kowzan
,
P.
Masłowski
,
J.
Komasa
,
M.
Puchalski
,
K.
Pachucki
,
R.
Ciuryło
, and
D.
Lisak
, “
Accurate deuterium spectroscopy for fundamental studies
,”
J. Quant. Spectrosc. Radiat. Transfer
213
,
41
(
2018
).
12.
M.
Słowiński
,
F.
Thibault
,
Y.
Tan
,
J.
Wang
,
A.-W.
Liu
,
S.-M.
Hu
,
S.
Kassi
,
A.
Campargue
,
M.
Konefał
,
H.
Jóźwiak
,
K.
Patkowski
,
P.
Żuchowski
,
R.
Ciuryło
,
D.
Lisak
, and
P.
Wcisło
, “
H2-He collisions: Ab initio theory meets cavity-enhanced spectra
,”
Phys. Rev. A
101
,
052705
(
2020
).
13.
P.
Wcisło
,
I. E.
Gordon
,
H.
Tran
,
Y.
Tan
,
S. M.
Hu
,
A.
Campargue
,
S.
Kassi
,
D.
Romanini
,
C.
Hill
,
R. V.
Kochanov
, and
L. S.
Rothman
, “
The implementation of non-Voigt line profiles in the HITRAN database: H2 case study
,”
J. Quant. Spectrosc. Radiat. Transfer
177
,
75
91
(
2016
).
14.
W. K.
Bischel
and
M. J.
Dyer
, “
Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2
,”
Phys. Rev. A
33
,
3113
3123
(
1986
).
15.
L. A.
Rahn
and
G. J.
Rosasco
, “
Measurement of the density shift of the H2 Q(0–5) transitions from 295 to 1000 K
,”
Phys. Rev. A
41
,
3698
3706
(
1990
).
16.
L. A.
Rahn
,
R. L.
Farrow
, and
G. J.
Rosasco
, “
Measurement of the self-broadening of the H2 Q(0–5) Raman transitions from 295 to 1000 K
,”
Phys. Rev. A
43
,
6075
6088
(
1991
).
17.
W. E.
Perreault
,
H.
Zhou
,
N.
Mukherjee
, and
R. N.
Zare
, “
Resonant cold scattering of highly vibrationally excited D2 with Ne
,”
J. Chem. Phys.
157
,
144301
(
2022
).
18.
W. E.
Perreault
,
N.
Mukherjee
, and
R. N.
Zare
, “
Quantum control of molecular collisions at 1 kelvin
,”
Science
358
,
356
359
(
2017
).
19.
W. E.
Perreault
,
N.
Mukherjee
, and
R. N.
Zare
, “
HD (v = 1, j = 2, m) orientation controls HD–He rotationally inelastic scattering near 1 K
,”
J. Chem. Phys.
150
,
174301
(
2019
).
20.
M.
Morita
and
N.
Balakrishnan
, “
Stereodynamics of rotationally inelastic scattering in cold He + HD collisions
,”
J. Chem. Phys.
153
,
091101
(
2020
).
21.
R. W. P.
Drever
,
J. L.
Hall
,
F. V.
Kowalski
,
J.
Hough
,
G. M.
Ford
,
A. J.
Munley
, and
H.
Ward
, “
Laser phase and frequency stabilization using an optical resonator
,”
Appl. Phys. B
31
,
97
105
(
1983
).
22.
C.-F.
Cheng
,
Y. R.
Sun
,
H.
Pan
,
J.
Wang
,
A.-W.
Liu
,
A.
Campargue
, and
S.-M.
Hu
, “
Electric-quadrupole transition of H2 determined to 10−9 precision
,”
Phys. Rev. A
85
,
024501
(
2012
).
23.
C.-F.
Cheng
,
Y. R.
Sun
,
H.
Pan
,
Y.
Lu
,
X.-F.
Li
,
J.
Wang
,
A.-W.
Liu
, and
S.-M.
Hu
, “
Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy
,”
Opt. Express
20
,
9956
9961
(
2012
).
24.
S.
Hess
, “
Kinetic theory of spectral line shapes. The transition between Doppler broadening and collisional broadening
,”
Physica
61
,
80
94
(
1972
).
25.
L.
Monchick
and
L. W.
Hunter
, “
Diatomic-diatomic molecular collision integrals for pressure broadening and Dicke narrowing: A generalization of Hess’s theory
,”
J. Chem. Phys.
85
,
713
(
1986
).
26.
G. C.
Corey
and
F. R.
McCourt
, “
Dicke narrowing and collisional broadening of spectral lines in dilute molecular gases
,”
J. Chem. Phys.
81
,
2318
2329
(
1984
).
27.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
28.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
(
1992
).
29.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
,
1358
(
1993
).
30.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
, “
Accurate correlation consistent basis sets for molecular core-valence correlation effects: The second row atoms Al-Ar, and the first row atoms B-Ne revisited
,”
J. Chem. Phys.
117
,
10548
(
2002
).
31.
F. M.
Tao
and
Y. K.
Pan
, “
Moller–Plesset perturbation investigation of the He2 potential and the role of midbond basis functions
,”
J. Chem. Phys.
97
,
4989
(
1992
).
32.
F.-M.
Tao
and
Y.-K.
Pan
, “
Ab initio potential energy curves and binding energies of Ar2 and Mg2
,”
Mol. Phys.
81
,
507
(
1994
).
33.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors
,”
Mol. Phys.
19
,
553
(
1970
).
34.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
35.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, MOLPRO, version 2012.1, a package of ab initio programs,
2012
, see http://www.molpro.net.
36.
A.
Wolf
,
M.
Reiher
, and
B. A.
Hess
, “
The generalized Douglas-Kroll transformation
,”
J. Chem. Phys.
117
,
9215
(
2002
).
37.
M.
Reiher
and
A.
Wolf
, “
Exact decoupling of the Dirac Hamiltonian. I. General theory
,”
J. Chem. Phys.
121
,
2037
(
2004
).
38.
M.
Reiher
and
A.
Wolf
, “
Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order
,”
J. Chem. Phys.
121
,
10945
(
2004
).
39.
W. A.
de Jong
,
R. J.
Harrison
, and
D. A.
Dixon
, “
Parallel Douglas-Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas-Kroll contracted basis sets
,”
J. Chem. Phys.
114
,
48
(
2001
).
40.
A. M.
Arthurs
and
A.
Dalgarno
, “
The theory of scattering by a rigid rotator
,”
Proc. Math. Phys. Eng. Sci.
256
,
540
551
(
1960
).
41.
M. S.
Child
,
Molecular Collision Theory
(
Academic Press
,
1974
).
42.
D. E.
Manolopoulos
, “
An improved log derivative method for inelastic scattering
,”
J. Chem. Phys.
85
,
6425
6429
(
1986
).
43.
M. H.
Alexander
and
D. E.
Manolopoulos
, “
A stable linear reference potential algorithm for solution of the quantum close-coupled equations in molecular scattering theory
,”
J. Chem. Phys.
86
,
2044
2050
(
1987
).
44.
J. M.
Hutson
and
C. R.
Le Sueur
, “
MOLSCAT: A program for non-reactive quantum scattering calculations on atomic and molecular collisions
,”
Comput. Phys. Commun.
241
,
9
18
(
2019
).
45.
J.
Schaefer
and
L.
Monchick
, “
Line broadening of HD immersed in He and H2 gas
,”
Astron. Astrophys
.
859
,
265
(
1992
).
46.
D. A.
Shapiro
,
R.
Ciuryło
,
J. R.
Drummond
, and
A. D.
May
, “
Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. I. Formalism
,”
Phys. Rev. A
65
,
012501
(
2002
).
47.
R.
Ciuryło
,
D. A.
Shapiro
,
J. R.
Drummond
, and
A. D.
May
, “
Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. II. Application
,”
Phys. Rev. A
65
,
012502
(
2002
).
48.
P.
Wcisło
,
A.
Cygan
,
D.
Lisak
, and
R.
Ciuryło
, “
Iterative approach to line-shape calculations based on the transport-relaxation equation
,”
Phys. Rev. A
88
,
12517
(
2013
).
49.
D.
Bohm
and
E. P.
Gross
, “
Theory of plasma oscillations. A. Origin of medium-like behavior
,”
Phys. Rev.
75
,
1851
1864
(
1949
).
50.
S.
Green
, “
Raman Q-branch line shapes as a test of the H2–Ar intermolecular potential
,”
J. Chem. Phys.
93
,
1496
1501
(
1990
).
51.
S.
Green
,
D. W.
Schwenke
, and
W. M.
Huo
, “
Raman Q-branch line shapes as a test of a H2–Ar intermolecular potential
,”
J. Chem. Phys.
101
,
15
19
(
1994
).
52.
L.
Waldron
and
W.-K.
Liu
, “
Hydrogen-rare gas interactions and Raman line shapes
,”
J. Chin. Chem. Soc.
48
,
439
448
(
2001
).
53.
L.
Waldron
,
W.-K.
Liu
, and
R. J.
Le Roy
, “
Collisional broadening and shifting of Raman lines, and the potential energy surface for H2–Ar
,”
J. Mol. Struct.: THEOCHEM
591
,
245
253
(
2002
).

Supplementary Material

You do not currently have access to this content.